java多线程aqs实现工具类_深入理解Java多线程与并发框(第⑩篇)——并发辅助工具类(很好的玩的工具类)...

本文深入解析了Java中四种并发控制工具的核心原理与应用场景,包括Semaphore信号灯、CountDownLatch倒计时锁、Sync同步器及CyclicBarrier循环栅栏。探讨了它们如何帮助开发者有效地管理和控制多线程间的同步问题。

exchanger;

/** 被打印的数 */

private Integer number;

private final Integer endNumber;

public Thread2(Exchangerexchanger, Integer startNumber, Integer endNumber) {

this.exchanger = exchanger;

this.number = startNumber;

this.endNumber = endNumber;

}

@Override

public void run() {

while (number <= endNumber) {

if (number % 2 == 0) {

System.out.println("线程:" + Thread.currentThread().getName() + " : " + number);

}

try {

exchanger.exchange(number++);

}

catch (InterruptedException e) {

e.printStackTrace();

}

}

}

}

```

# 二、Semaphore 信号灯

核心原理: 通过发放设置最大 许可数,来限制线程的并发数。 默认是 非公平锁,效率高。

```

public Semaphore(int permits) {

sync = new NonfairSync(permits);

}

Semaphore semaphore = new Semaphore(5);

try {

semaphore.acquire();

// 获取许可

// 逻辑

}

catch (InterruptedException e) {

e.printStackTrace();

}

finally {

semaphore.release();

// 释放许可

}

```

# 三、CountDownLatch 倒计时闩(锁)

核心原理:线程以 组团 的方式进行任务。 count 作为 stat 状态。await() 方式将 阻塞当前线程,直到 count 为 0。

```

CountDownLatch countDownLatch = new CountDownLatch(5);

countDownLatch.countDown();

// count - 1

// 预处理

try {

countDownLatch.await();

// 阻塞当前线程

// 大家一起处理的时候,我才处理

}

catch (InterruptedException e) {

e.printStackTrace();

}

```

Sync同步器

```

private static final class Sync extends AbstractQueuedSynchronizer {

private static final long serialVersionUID = 4982264981922014374L;

Sync(int count) {

setState(count);

}

int getCount() {

return getState();

}

protected int tryAcquireShared(int acquires) {

return (getState() == 0) ? 1 : -1;

}

protected Boolean tryReleaseShared(int releases) {

// 递减 count; 转换为零时发出信号

for (;;) {

int c = getState();

if (c == 0)

return false;

int nextc = c-1;

if (compareAndSetState(c, nextc))

return nextc == 0;

}

}

}

```

# 四、CyclicBarrier 循环栅栏(循环锁)

核心原理: 基于 ReentrantLock 和 Condition。 CyclicBarrier 不仅具有 CountDownLatch 的功能,还有实现屏障等待的功能,也就是阶段性同步。

**CyclicBarrier与CountDownLatch比较**

- CountDownLatch:一个线程(或者多个),等待另外N个线程完成某个事情之后才能执行;CyclicBarrier:N个线程相互等待,任何一个线程完成之前,所有的线程都必须等待。

- CountDownLatch:一次性的;CyclicBarrier:可以重复使用。

- CountDownLatch基于AQS;CyclicBarrier基于锁和Condition。本质上都是依赖于volatile和CAS实现的。

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习启发因子优化,实现路径的动态调整多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑实时避障等多目标协同优化;③为智能无人系统的自主决策环境适应能力提供算法支持; 阅读建议:此资源结合理论模型MATLAB实践,建议读者在理解ACOMLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值