最小生成树:Kruskal算法
课程回顾
A
10 11
B 16 17 F 无向图:所有边都是无向边的
图
18 G
12 26
19 连通图:所有顶点都连通的图
8 I 24
H 7 加权图:所有边都带权重的图
C 21 16
E
22
D 20
生成树:包含图的全部n个顶点,但仅保留维持所有顶点连
通的n-1条边
生成树的耗费:生成树所有边的权重的和
第4章 图结构 解放军理工大学
Kruskal算法
教学目标和要求
1.准确描述图的最小生成树的定义,知道最小生
成树能够做什么
2. 能够运用Kruskal算法求解图的最小生成树的
边序列
3. 能够计算机编程实现Kruskal算法
第4章 图结构 解放军理工大学
1、最小生成树的定义
什么是最小生成树?
若S是G 的MST ,对于G 的任意生成树S' ,C(S)≤C(S')
第4章 图结构 解放军理工大学
2、如何求解最小生成树?
穷举?
选短边?
A
22
5 6
B
8
16
D C
12 14
9 G
24
8
10
E F
10
第4章 图结构 解放军理工大学
2.1 MST的求解:Kruskal算法
算法的基本思想
按长度从小到大的依次把最短边加进生成树的树边集
若添加某边后形成了回路,就舍弃这条边
反复如此,直到选出n-1条边,便得到最小生成树
A
A