数理统计与统计软件测试卷,数理统计试题及答案

《数理统计试题及答案》由会员分享,可在线阅读,更多相关《数理统计试题及答案(10页珍藏版)》请在人人文库网上搜索。

1、2010-2011学年第一学期考试试卷(A)课程名称: 数理统计A ( 卷) 课程所在学院: 理学院 考试班级 学号 姓名 成绩 试卷说明:1. 本次考试为闭卷考试。本试卷共计 四页,共 十二 大部分,请勿漏答;2. 考试时间为 120 分钟,请掌握好答题时间;3. 答题之前,请将试卷和答题纸上的考试班级、学号、姓名填写清楚;4. 答案写在本试卷上;5. 考试中心提示:请你遵守考场纪律,诚信考试、公平竞争!一。填空题(每空2分,共12分)1已知三事件A,B,C相互独立,概率分别为0.5, 0.6,0.7,则三者中至少有一个发生的概率为_ 。2若,则事件是否独立 。3袋中有4个白球2个黑球,若不。

2、放回抽取,则第二次取到白球的概率为__________。4. 设,且相互独立,则________。5. 设独立,均服从。服从分布________。6设为来自参数泊松分布总体,为样本均值,则= ___ _。二。(5分)设二项分布随机变量,,若,求 三。(13分)已知X的概率密度函数为,求(1)常数的值;(2)求分布函数;(3)。四(5分)设,求。五(15分)已知的联合概率分布,求:Y X10111/81/81/801/801/811/81/81/8(1)求的分布;(2)计算;(3)写出X与Y各自的边缘分布,判断X与Y的是否相互独立?六(5分)某人上班时需搭乘一趟公交车,若每天上班时的候车时间服从。

3、0,5区间上的均匀分布(单位:分),问此人在300个工作日中用于上班的候车时间之和大于12小时的概率?(用标准正态分布函数表示)。七(5分)设独立同分布, 都在区间上服从均匀分布,求的矩估计和极大似然估计。八(10分)现抽查了5mm玻璃总体的9个体的厚度,得到如下数据(单位:mm): 4.8 4.1 4.4 4.4 4.0 4.5 4.1 4.9 4.2 ()设玻璃厚度服从正态分布,在显著性水平下,(1)能否认为?(2)在置信度0.95下,计算玻璃平均厚度的置信区间。九(5分)在相同条件下对两种品牌的洗涤剂分别进行去污试验,测得去污率(%)结果如下:甲:79 80 76 82 78 76, (。

4、)乙:73 77 79 75 75 , ()假定两品牌的去污率服从正态分布且方差相同,问两品牌的去污率是否有显著差异?()十(5分)一农场10年前在一鱼塘中按比例20:15:40:25投放了四种鱼:鲑鱼、鲈鱼、竹夹鱼和鲇鱼的鱼苗,现在在鱼塘里获得一样本如下:种类鲑鱼鲈鱼竹夹鱼鲇鱼数量(条)132100200168试取0.05,检验各类鱼数量的比例较10年前是否有显著的改变。十一(10分)下面给出的是用于计算器的四种类型的电路的响应时间为(单位:ms):工厂响应时间A912108544387.2414B757827182.25187C813930300314列出方差分析表,判断不同类型的电路的响。

5、应时间是否有显著差异。()十二.(10分)一种用于生物和医学研究的物质通过航空运输给用户。1000管此物质针剂用纸箱包装。 在5次运输中,记录了纸箱在途中的转机次数(X), 以及在终点时针剂被打破的数目(Y)。 X10203Y169171222估计Y对X的线性回归方程,2010-2011学年第一学期考试试卷(A)参考答案课程名称: 数理统计A ( 卷) 课程所在学院: 理学院 考试班级 学号 姓名 成绩 一。填空题(每空2分,共12分)1已知三事件A,B,C相互独立,概率分别为0.5, 0.6,0.7,则三者中至少有一个发生的概率为_0.94 。2若,则事件是否独立 0.8 。3袋中有4个白球。

6、2个黑球,若不放回抽取,则第二次取到白球的概率为___2/3_______。4. 设,且相互独立,则________。5. 设独立,均服从。服从分布__F(6,3)______。6设为来自参数泊松分布总体,为样本均值,则= __1/6_ _。二。(5分)设二项分布随机变量,,若,求 解:因为 , 所以 因为所以 因而 =1=1三。(13分)已知X的概率密度函数为,求(1)常数的值;(2)求分布函数;(3)。解:(1)(2)(3)四(5分)设,求。解: 五(15分)已知的联合概率分布,求:Y X10111/81/81/801/801/811/81/81/8(1)求的分布;(2)计算;(3)写出X。

7、与Y各自的边缘分布,判断X与Y的是否相互独立?解:(1)Y X10111/8(0)1/8(1)1/8(-2)01/8(1)0(0)1/8(-1)11/8(2)1/8(1)1/8(0)(括号了表示X-Y的可能取值。)所以 的分布为:X-Y-2-1012P1/82/82/82/81/8(2) 由的分布知:(3)X边缘分布X-101P3/82/83/8(列之和得X边缘概率) Y边缘分布Y-101P3/82/83/8(行之和得Y边缘概率)六(5分)某人上班时需搭乘一趟公交车,若每天上班时的候车时间服从0,5区间上的均匀分布(单位:分),问此人在300个工作日中用于上班的候车时间之和大于12小时的概率?。

8、(用标准正态分布函数表示)。解:本题属于中心极限定理的问题。设为第天上班的候车时间,则为300个工作日中用于上班的候车时间之和。有题设知都服从从0,5区间上的均匀分布,所以根据中心极限定理知:所以:七(5分)设独立同分布, 都在区间上服从均匀分布,求的矩估计和极大似然估计。解:(1)由于, ,所以的矩法估计量为;(2)的分布密度为,。所以,参数的极大似然估计为.八(10分)现抽查了5mm玻璃总体的9个体的厚度,得到如下数据(单位:mm): 4.8 4.1 4.4 4.4 4.0 4.5 4.1 4.9 4.2 ()设玻璃厚度服从正态分布,在显著性水平下,(1)能否认为?(2)在置信度0.95下。

9、,计算玻璃平均厚度的置信区间。解:(1) 统计假设 (左边检验) 检验统计两 ,故接受原假设H0,能认为。 (2) ,的置信度为95%的置信区间为九(5分)在相同条件下对两种品牌的洗涤剂分别进行去污试验,测得去污率(%)结果如下:甲:79 80 76 82 78 76, ()乙:73 77 79 75 75 , ()假定两品牌的去污率服从正态分布且方差相同,问两品牌的去污率是否有显著差异?()解:分别表示甲、乙的平均去污率。统计假设 ,由于方差相同,可以使用检验两个总体的样本方差分别为和,样本容量检验的统计量接受H0,可以两品牌的去污率是差异不显著。十(5分)一农场10年前在一鱼塘中按比例20。

10、:15:40:25投放了四种鱼:鲑鱼、鲈鱼、竹夹鱼和鲇鱼的鱼苗,现在在鱼塘里获得一样本如下:种类鲑鱼鲈鱼竹夹鱼鲇鱼数量(条)132100200168试取0.05,检验各类鱼数量的比例较10年前是否有显著的改变。解:属于总体分布的假设检验问题(拟合优度假设检验问题)。统计假设: :各类鱼数量的比例符合20:15:40:25(较10年前无显著的改变):各类鱼数量的比例不符合20:15:40:25(较10年前有显著的改变)检验统计量:,所以拒绝H0,能认为较10年前有显著的改变十一(10分)下面给出的是用于计算器的四种类型的电路的响应时间为(单位:ms):工厂响应时间A912108544387.24。

11、14B757827182.25187C813930300314列出方差分析表,判断不同类型的电路的响应时间是否有显著差异。()解:属于单因素方差分析的问题:要按相关公式把然后在把方差分析表列出。变差来源平方和自由度均方和F值显著性()组间SS119.3666729.1.组内SS245.5595.总和SS因为F=1.,所以不同类型的电路的响应时间差异不显著。十二.(10分)一种用于生物和医学研究的物质通过航空运输给用户。1000管此物质针剂用纸箱包装。 在5次运输中,记录了纸箱在途中的转机次数(X), 以及在终点时针剂被打破的数目(Y)。 X10203Y169171222估计Y对X的线性回归方程,解:属于一元线性回归分析问题。回归方程的系数:。所以经验回归方程:= 10.824+3.647x。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值