凑硬币问题
假设有 1 元,3 元,5 元的硬币若干(无限),现在需要凑出 11 元,问如何组合才能使硬币的数量最少?
用数组d来存储当前每个面值可以对应的合成的最小数量
d(i) = d(j) + 1
这里 j < i。通俗地讲,我们需要凑出 i 元,就在凑出 j 的结果上再加上某一个硬币就行了。
那这里加上的哪个硬币呢。把每个硬币试一下就行了:
1.假设最后加上的是 1 元硬币,那 d(i) = d(j) + 1 = d(i - 1) + 1。
2.假设最后加上的是 3 元硬币,那 d(i) = d(j) + 1 = d(i - 3) + 1。
3.假设最后加上的是 5 元硬币,那 d(i) = d(j) + 1 = d(i - 5) + 1。
我们分别计算出 d(i - 1) + 1,d(i - 3) + 1,d(i - 5) + 1 的值,取其中的最小值,即为最优解,也就是 d(i)。
状态转移方程 d(i)=min{d(j)+1},if i>j
d(0)=0;
d(1)=1;
d(2)=d(1)+1=2;
d(3)=min{d(2)+1,d(0)+1}=1;
d(4)=min{d(3)+1,d(1)+1}=2;
d(5)=min{d(4)+1,d(2)+1,d(0)+1}=1;
d(6)=min{d(5)+1,d(3)+1,d(1)+1}=2;
public class test1430 {
private int[] d; // 储存结果
private int[] coins = {1,3,5}; // 硬币种类
private void d_func(int i, int num) {
if (i == 0) {
d[i] = 0;
<
本文介绍了使用动态规划解决凑硬币问题,例如如何用1元、3元、5元硬币凑出11元,使得硬币数量最少。通过状态转移方程 `d(i)=min{d(j)+1}`,从最小面值开始计算,找到最优解。此外,还讨论了如何调整算法以找出最多需要多少个硬币来凑出指定金额。
最低0.47元/天 解锁文章
2036

被折叠的 条评论
为什么被折叠?



