希尔瓦娜斯服务器位置,魔兽世界9.1希尔瓦娜斯战斗信息与场景一览[多图]

魔兽世界9.1中希尔瓦娜斯是很多玩家关注的重点,本次就为大家带来了魔兽世界9.1希尔瓦娜斯战斗信息与场景一览,非常全面的内容,想了解希尔瓦娜斯战斗信息与场景的朋友可以参考,希望能帮到大家。9.1希尔瓦娜斯战斗信息与场景

希瓦分为3个阶段,P1时战斗场景在托加斯特的顶端。

8a4cacc08c4e36ae5acae82dc1296a16.png

当降至80%生命值时,希瓦会破坏托加斯特的场景。之后有一个占位符动画,典狱长已经从噬渊逼近奥利波斯,希瓦则会在典狱长的锁链上阻击我们。

3b65bcba3ef44700354d8391e306428b.png

这个时候,吉安娜和萨尔会出现,用元素和冰的力量帮助玩家追上希瓦。但希瓦也会召唤小怪来阻碍他们。

这里还有段对话:

吉安娜:有什么东西限制了我的魔法,我们现在在哪儿"center">

eb6b2ec53d148c89194a1960678ce735.png

这个动画目前是未完工状态,典狱长在干嘛也不知道。

个人猜测这个动画是P3的转场动画,但是也有可能是最终战的结尾动画,还是要等待后续测试。

611ef8f24390480d86379582fe687da2.png

这个则是希瓦P3时奥利波斯的场地,大家应该都很熟悉,这里就是仲裁官宕机的密室。

典狱长和噬渊的力量已经到达仲裁官的密室了。

08f884088779fb25bfd1f547226313e7.png

希瓦最终战的结局目前还不知晓,按照暴雪以往的操作,应该是只能在正式服才能看到结局CG了。

不排除后续测试挖掘出什么新的文字对话,大家可以期待一下。

AI实战-出租车价格数据集分析预测实例(含20个源代码+65.69 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:20个代码,共124.23 KB;数据大小:1个文件共65.69 KB。 使用到的模块: pandas seaborn xgboost matplotlib.pyplot sklearn.preprocessing.RobustScaler sklearn.metrics.mean_absolute_error sklearn.model_selection.GridSearchCV sklearn.model_selection.train_test_split numpy warnings joblib sklearn.set_config sklearn.impute.SimpleImputer sklearn.preprocessing.LabelEncoder sklearn.model_selection.cross_val_score sklearn.preprocessing.StandardScaler sklearn.metrics.r2_score sklearn.metrics.mean_squared_error sklearn.linear_model.LinearRegression sklearn.linear_model.Lasso sklearn.linear_model.Ridge sklearn.neighbors.KNeighborsRegressor sklearn.ensemble.RandomForestRegressor sklearn.ensemble.GradientBoostingRegressor os sklearn.preprocessing.OneHotEncoder sklearn.compose.ColumnTransformer sklearn.pipeline.Pipeline sklearn.tree.DecisionTreeRegressor sklearn.svm.SVR sklearn.neural_network.MLPRegressor bokeh.io.output_notebook bokeh.io.show bokeh.plotting.figure bokeh.layouts.gridplot sklearn.preprocessing.PolynomialFeatures scipy.stats sklearn.metrics.mean_absolute_percentage_error sklearn.ensemble.ExtraTreesRegressor xgboost.XGBRegressor lightgbm.LGBMRegressor sklearn.impute.IterativeImputer statsmodels.stats.outliers_influence.variance_inflation_factor statsmodels.api sklearn.metrics.( plotly.express psynlig.plot_correlation_heatmap bokeh.plotting.show bokeh.plotting.output_notebook catboost.CatBoostRegressor sklearn.linear_model.ElasticNet missingno
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值