matlab 反三角函数图像不显示_有问必答:专业图像工作者如何选购显示器?看完这些不被坑...

摄影已经进入了全民时代,决定摄影作品好坏的因素除了技术意外,专业的设备也必不可少。以往很多人将目光聚焦在前期拍摄的器材上,从而忽略了图像后期处理的技术与设备。具体来说,在进行后期修图处理时,不专业的显示器通常会带来出图时的色差、色偏、色不准等毛病,试想修图的屏幕色彩不准,最后输出到其他荧幕或者打印出来的作品的表现一定非常糟糕。

d1f6bf502fa73e45687d426b0b64ba87.png

面对市面上琳琅满目的专业显示器,以及各厂商的各类复杂宣传,很多用户在挑选时都会感到手忙脚乱,其实如果考虑好以下的几个重要标准,一定可以挑选到一台心仪的专业显示器,高效完成影像处理工作。

首先,我们使用专业显示器时最大的期望就是“所见即所得”,最大限度还原图像的真实色彩,这是专业显示器的根本。要达到这个效果,色域、色深、色准都要兼顾。

先来说色域,直观的讲:显示器覆盖的色域越广,能呈现的色彩越丰富。常见的色彩空间有:Adobe RGB、sRGB、DCI-P3、Display P3和Rec.709。一般来说,色彩的覆盖范围Adobe RGB>P3>sRGB >Rec.709。相机中RAW格式的照片就是采用Adobe RGB色域模式,为了避免后期修图中损失相机照片的色彩,专业摄影显示器必须要覆盖Adobe RGB色域。

54b458d0330ac48db79b70224dbf9699.png

当然,考虑到摄影师完整的工作流程和设备偏好,除Adobe RGB色域外其他色彩标准也需具备。如果将图片上传到网上浏览,则需拥有平面主流色彩标准sRGB;偏爱苹果设备用户可能会更青睐Display P3色域;输出打印用户必须用到CMYK色彩空间;影视剪辑还需要用到DCI-P3和Rec.709色域......总之就是不同的使用场景对应不同的侧重点。

4023c947731d5e302a4426186ec507fb.png

此外,显示器的色深也非常重要,色深(灰阶)反映屏幕上每个点前后两个色彩过渡是否流畅,用bit数表示色数,数值越大,色彩过渡越均匀;而当屏幕色深不够时,一些相近的色彩会难以区分,作品失去了层次感,或者色彩过渡出现断层。所以专业的摄影显示器色深应达到10-bit,最大展现10.7亿种色彩,为摄影师提供更多的色彩种类和更自然的色彩过渡。

273b654cd388352c36105e560a612569.png

除了色域和色深意外,色准对于专业显示器也非常重要,△E值是衡量色彩是否准确的指标,它能够反映出显示器色彩与标准值之间的差距的大小。△E值越小、颜色准确度越高。一般来说∆E位于3到6之间的变化是可以接受的,而数值在3.0以下的话,人眼基本上分辨不出色彩的差异,通常被认为是相同的颜色。因此为了让显示器显示的照片和摄影师拍摄的照片颜色一致,显示器的△E应小于3。对色彩有更高要求的专业用户甚至会苛求△E值≤2.

0c7f012b0cc8804ae35d0ed76abea4f7.png

还有一个细节值得注意,色准只是屏幕中央的色彩准确度,而屏幕四周的色温和亮度会与中心有所差异,给后期修图带来困扰,这时选择一台带有亮度色温均匀技术的显示器可以自动调整屏幕四周的亮度色温与中心一致,让后期修图更加精确。

选购专业显示器时,除了要注重屏幕色彩的表现,分辨率也是另一个必须考量的要素,因为摄影后期修图时经常需要放大图片进行细节精修,如果屏幕清晰度不够,就会影响修图质量。而提到分辨率,就不得不跟屏幕尺寸一起聊聊,毕竟屏幕的清晰度最终是取决于PPI值。

f56851c7c5273b8ceac63159d8519d23.png

目前主流的专业摄影显示器的主流尺寸是24和27吋,分辨率有1080P、2K以及4K等选择。高分辨率带来的不仅是更清晰的画质,还有更大的操作空间,当然分辨率也不是越高越好,分辨率太高会导致图标以及字体太小,观看起来比较费力。

c2e9080dea590aa1235b8cdae4aec4d0.png

24时的常规大小显示器,1080P分辨率即可满足大部分工作;而在选购27吋显示器时,为保障显示效果的细腻度,2K或者4K的分辨率会比较合适,这样可以保证尺寸够大、图像清晰,同时字体也不会太小。一般来说2K已经能足够满足需求,但如果工作需要输出4K视频图片的则尽量选择4K分辨率的显示器。当然具体问题具体分析,屏幕尺寸、分辨率可具体根据使用环境和经济状况选择。

4d5219a0b5d7e51d5270f509226a2c63.png

我们可以在显示器参数中查看显示器的面板类型,当前市面上最常见的主要有IPS、TN、PLS、VA等,如果从事和影像相关的工作,那么建议使用搭载IPS面板的屏幕。IPS面板对于色彩的呈现范围与准确性有着更好的表现,还可提供178°的广视角,多角度观看不会偏色变形。

c1b6f985ecce9164b713a6a6226e5e08.png

而对于有较高色彩需求的用户来说,即使选择了经过出厂校色的专业显示器,也不是一劳永逸,还是要养成定期校色的好习惯。常见的校准方法一般分为软件校色和硬件校色两种,软件校色只是修改主机显卡输出的RGB 值,更换主机就得重新校色;而硬件校色更加强大,直接将校色数据储存于屏幕的 3D-LUT(3D 对照表)之中,更换主机也无须重新校色。还可提供更精准的颜色呈现,保留屏幕可呈现的最大色阶数,进而达到显色的连续性,避免颜色断层。

2db893fbc6d90cbfde2cdd6e3e1e17c1.png

明基SW270C显示器的 16-bit 3D LUT 拥有庞大的色彩点阵,可以更好地实现硬件校色,使屏幕显色更准确

摄影师在图片后期处理中需要长时间观看屏幕,保持同一姿势工作颈部会有很大的负担,因此选一个能够高低升降、自由旋转符合人体工程学设计的显示器也是很有必要的。 同时,显示器竖屏功能可充分利用空间,对于修竖构图作品也很有帮助。

9648c6f0519e4fcb0432e41f4c7baf02.png

作为一款专业摄影显示器,拓展性也不容忽视,例如SD卡槽的配备可让摄影师迅速使用显示器直接浏览图片;而对于苹果用户来说,新版Macbook一般都只配备Type-C接口,这也导致他们在外接显示器时碰到接口不对,需另外购买转接口的情况。因此摄影师在选择显示器时,最好选择配有USB Type-C接口的显示器,可以直接一线串联,免去转接烦恼。

9dd2fba4f1633ece4566d285ef61c0d9.png

总结与好物推荐:

专业摄影显示器选择标准:

1.出色的色彩表现能力,覆盖Adobe RGB 、支持10bit色深、△E值≤2

2.合适的尺寸和适中的分辨率

3.IPS面板

4.支持硬件校色

5.丰富的接口以及人体工学等设计

72e67c6ccb9a066e0557301919ba793b.png

这些指标可谓是非常苛刻,目前市场中符合上述要求的专业摄影显示器可谓是屈指可数,除了高价的艺卓之外,我们还可将眼光放到其他品牌上。例如在专业显示器领域深耕多年的明基就拥有多款明星产品,SW系列已成为专业摄影赛事的评委用机,专业度毋庸置疑。

e3601009eca46ccec09e52a29441524e.png

明基SW系列专业摄影显示器不仅拥有99% Adobe RGB,还覆盖sRGB、P3和Rec.709等多种色域,配备SD卡槽和快捷控制器可以有效地提高工作效率,满足不同工作的专业需求。

SW240的尺寸偏小巧,适合摄影入门和工作空间有限的用户,24吋的16:10的IPS屏,可以最大呈现照片3:2的原始比例,减少黑边的存在,16:10的屏幕也可以呈现更多的文字,同时满足后期修图和日常办公的需求。

fd74e465d6efbc4f1ddf5171cdc8a1f2.png

(SW240)

对于预算比较充足且有影视后期需求的用户,可以选择27吋2K分辨率的SW2700PT,这款产品覆盖96%DCI-P3色域,对影视后期工作者是一个更好的选择。而配备遮光罩可以有效地减少环境光对屏幕的干扰。

c17dbffea4c42166c72291bf9a85b4c3.png

(SW2700PT)

而对于苹果Macbook用户来说,覆盖97%Disolay P3色域的SW270C是非常好的选择,搭载全新的亮度色温均匀技术可以让显示器色彩与Macbook的色彩更加统一,升级的16-bit 3D LUT硬件校色让色彩更加准确持久;更重要的是,这款产品拥有Type-C接口,可轻松实现一线串联。

6b91120cc2c224bc03b9aa4e4aad3777.png

(SW270C)

最后还有一款产品可以介绍,它就是SW271,这款产品的尺寸为27时,视野非常宽广;而4K分辨率将呈现更多的图像细节,直接预览4K视频的超清效果,给后期制作带来更大的操作空间,其配备的OSD快捷控制器可以轻松更换色域模式,让工作更加高效。

f3306ecd6fcdb553336a07dca59d2526.png

(SW271)

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
<p> 需要学习Windows系统YOLOv4的同学请前往《Windows版YOLOv4目标检测实战:原理与源码解析》, </p> <p> 课程链接 https://edu.csdn.net/course/detail/29865 </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> <span>Linux</span>创始人<span>Linus Torvalds</span>有一句名言:<span>Talk is cheap. Show me the code. </span><strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> <span> </span>代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理<br /> - 神经网络及darknet的C语言实现,尤其是向传播的梯度求解和误差计算<br /> - 代码阅读工具及方法<br /> - 深度学习计算的利器:BLAS和GEMM<br /> - GPU的CUDA编程方法及在darknet的应用<br /> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <strong><span style="color:#3598db;">【相关课程】</span></strong> </h3> <p> 除本课程《YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4-tiny目标检测实战:训练自己的数据集》 </p> <p> 《YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制 </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202006291526195469.jpg" /> </p> <p>   </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007011518185782.jpg" /> </p>
<p> 欢迎参加英特尔® OpenVINO™工具套件初级课程 !本课程面向零基础学员,将从AI的基本概念开始,介绍人工智能与视觉应用的相关知识,并且帮助您快速理解英特尔® OpenVINO™工具套件的基本概念以及应用场景。整个课程包含了视频的处理,深度学习的相关知识,人工智能应用的推理加速,以及英特尔® OpenVINO™工具套件的Demo演示。通过本课程的学习,将帮助您快速上手计算机视觉的基本知识和英特尔® OpenVINO™ 工具套件的相关概念。 </p> <p> 为保证您顺利收听课程参与测试获取证书,还请您于<strong>电脑端</strong>进行课程收听学习! </p> <p> 为了便于您更好的学习本次课程,推荐您免费<strong>下载英特尔® OpenVINO™工具套件</strong>,下载地址:https://t.csdnimg.cn/yOf5 </p> <p> 收听课程并完成章节测试,可获得本课程<strong>专属定制证书</strong>,还可参与<strong>福利抽奖</strong>,活动详情:https://bss.csdn.net/m/topic/intel_openvino </p> <p> 8月1日-9月30日,学习完成【初级课程】的小伙伴,可以<span style="color:#FF0000;"><strong>免费学习【中级课程】</strong></span>,中级课程免费学习优惠券将在学完初级课程后的7个工作日内发送至您的账户,您可以在:<a href="https://i.csdn.net/#/wallet/coupon">https://i.csdn.net/#/wallet/coupon</a>查询优惠券情况,请大家报名初级课程后尽快学习哦~ </p> <p> <span style="font-size:12px;">请注意:点击报名即表示您确认您已年满18周岁,并且同意CSDN基于商务需求收集并使用您的个人信息,用于注册OpenVINO™工具套件及其课程。CSDN和英特尔会为您定制最新的科学技术和行业信息,将通过邮件或者短信的形式推送给您,您也可以随时取消订阅不再从CSDN或Intel接收此类信息。 查看更多详细信息请点击CSDN“<a href="https://passport.csdn.net/service">用户服务协议</a>”,英特尔“<a href="https://www.intel.cn/content/www/cn/zh/privacy/intel-privacy-notice.html?_ga=2.83783126.1562103805.1560759984-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">隐私声明</a>”和“<a href="https://www.intel.cn/content/www/cn/zh/legal/terms-of-use.html?_ga=2.84823001.1188745750.1560759986-1414337906.1552367839&elq_cid=1761146&erpm_id=7141654/privacy/us/en/">使用条款</a>”。</span> </p> <p> <br /> </p>
<p> 课程演示环境:<span>Ubuntu</span> </p> <p> <span> </span> </p> <p> 需要学习<span>Windows</span>系统<span>YOLOv4-tiny</span>的同学请前往《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span>在<span>COCO</span>上的性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span>和<span>FPS</span>的性能有巨大提升。并且,<span>YOLOv4-tiny</span>的权重文件只有<span>23MB</span>,适合在移动端、嵌入式设备、边缘计算等设备上部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv4-tiny</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程的<span>YOLOv4-tiny</span>使用<span>AlexAB/darknet</span>,在<span>Ubuntu</span>系统上做项目演示。包括:<span>YOLOv4-tiny</span>的网络结构、安装<span>YOLOv4-tiny</span>、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计<span>(mAP</span>计算和画出<span>PR</span>曲线<span>)</span>和先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》外,本人推出了有关<span>YOLOv4</span>目标检测的系列课程。请持续关注该系列的其它视频课程,包括:<span></span> </p> <p> 《<span>YOLOv4</span>目标检测实战:训练自己的数据集》<span></span> </p> <p> 《<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>YOLOv4</span>目标检测:原理与源码解析》<span></span> </p> <p> <br /> </p> <p> <br /> </p> <p> <img alt="" src="https://img-bss.csdnimg.cn/202007061437441198.jpg" /> </p> <img alt="" src="https://img-bss.csdnimg.cn/202007061438066851.jpg" />
<p> 课程演示环境:Windows10  </p> <p> 需要学习<span>Ubuntus</span>系统<span>YOLOv4-tiny</span>的同学请前往《<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》 <span></span> </p> <p> <span> </span> </p> <p> <span style="color:#E53333;">YOLOv4-tiny</span><span style="color:#E53333;">来了!速度大幅提升!</span><span></span> </p> <p> <span> </span> </p> <p> <span>YOLOv4-tiny</span>在<span>COCO</span>上的性能可达到:<span>40.2% AP50, 371 FPS (GTX 1080 Ti)</span>。相较于<span>YOLOv3-tiny</span>,<span>AP</span>和<span>FPS</span>的性能有巨大提升。并且,<span>YOLOv4-tiny</span>的权重文件只有<span>23MB</span>,适合在移动端、嵌入式设备、边缘计算设备上部署。<span></span> </p> <p> <span> </span> </p> <p> 本课程将手把手地教大家使用<span>labelImg</span>标注和使用<span>YOLOv4-tiny</span>训练自己的数据集。课程实战分为两个项目:单目标检测(足球目标检测)和多目标检测(足球和梅西同时检测)。<span></span> </p> <p> <span> </span> </p> <p> 本课程的<span>YOLOv4-tiny</span>使用<span>AlexAB/darknet</span>,在<span>Windows10</span>系统上做项目演示。包括:<span>YOLOv4-tiny</span>的网络结构、安装<span>YOLOv4-tiny</span>、标注自己的数据集、整理自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型、性能统计<span>(mAP</span>计算<span>)</span>和先验框聚类分析。 <span> </span> </p> <p> <span> </span> </p> <p> 除本课程《<span>Windows</span>版<span>YOLOv4-tiny</span>目标检测实战:训练自己的数据集》外,本人推出了有关<span>YOLOv4</span>目标检测的系列课程。请持续关注该系列的其它视频课程,包括:<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:训练自己的数据集》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:人脸口罩佩戴识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测实战:中国交通标志识别》<span></span> </p> <p> 《<span>Windows</span>版<span>YOLOv4</span>目标检测:原理与源码解析》<span></span> </p> <p> <span> <img alt="" src="https://img-bss.csdnimg.cn/202007061503586145.jpg" /></span> </p> <p> <span><img alt="" src="https://img-bss.csdnimg.cn/202007061504169339.jpg" /><br /> </span> </p>
程序员的必经之路! 【限时优惠】 现在下单,还享四重好礼: 1、教学课件免费下载 2、课程案例代码免费下载 3、专属VIP学员群免费答疑 4、下单还送800元编程大礼包 【超实用课程内容】  根据《2019-2020年中国开发者调查报告》显示,超83%的开发者都在使用MySQL数据库。使用量大同时,掌握MySQL早已是运维、DBA的必备技能,甚至部分IT开发岗位也要求对数据库使用和原理有深入的了解和掌握。 学习编程,你可能会犹豫选择 C++ 还是 Java;入门数据科学,你可能会纠结于选择 Python 还是 R;但无论如何, MySQL 都是 IT 从业人员不可或缺的技能!   套餐中一共包含2门MySQL数据库必学的核心课程(共98课时)   课程1:《MySQL数据库从入门到实战应用》   课程2:《高性能MySQL实战课》   【哪些人适合学习这门课程?】  1)平时只接触了语言基础,并未学习任何数据库知识的人;  2)对MySQL掌握程度薄弱的人,课程可以让你更好发挥MySQL最佳性能; 3)想修炼更好的MySQL内功,工作中遇到高并发场景可以游刃有余; 4)被面试官打破沙锅问到底的问题问到怀疑人生的应聘者。 【课程主要讲哪些内容?】 课程一:《MySQL数据库从入门到实战应用》 主要从基础篇,SQL语言篇、MySQL进阶篇三个角度展开讲解,帮助大家更加高效的管理MySQL数据库。 课程二:《高性能MySQL实战课》主要从高可用篇、MySQL8.0新特性篇,性能优化篇,面试篇四个角度展开讲解,帮助大家发挥MySQL的最佳性能的优化方法,掌握如何处理海量业务数据和高并发请求 【你能收获到什么?】  1.基础再提高,针对MySQL核心知识点学透,用对; 2.能力再提高,日常工作中的代码换新貌,不怕问题; 3.面试再加分,巴不得面试官打破沙锅问到底,竞争力MAX。 【课程如何观看?】  1、登录CSDN学院 APP 在我的课程中进行学习; 2、移动端:CSDN 学院APP(注意不是CSDN APP哦)  本课程为录播课,课程永久有效观看时长 【资料开放】 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化。  下载方式:电脑登录课程观看页面,点击右侧课件,可进行课程资料的打包下载。
<p> <strong><span style="background-color:#FFFFFF;color:#E53333;font-size:24px;">本页面购买不发书!!!仅为视频课购买!!!</span></strong> </p> <p> <strong><span style="color:#E53333;font-size:18px;">请务必到</span></strong><a href="https://edu.csdn.net/bundled/detail/49?utm_source=banner"><strong><span style="color:#E53333;font-size:18px;">https://edu.csdn.net/bundled/detail/49</span></strong></a><strong><span style="color:#E53333;font-size:18px;">下单购买课+书。</span></strong> </p> <p> <span style="font-size:14px;">本页面,仅为观看视频页面,如需一并购买图书,请</span><span style="font-size:14px;">务必到</span><a href="https://edu.csdn.net/bundled/detail/49?utm_source=banner"><span style="font-size:14px;">https://edu.csdn.net/bundled/detail/49</span></a><span style="font-size:14px;">下单购买课程+图书!!!</span> </p> <p> <br /> </p> <p> <span style="font-size:14px;">疯狂Python精讲课程覆盖《疯狂Python讲义》全书的主体内容。</span> </p> <span style="font-size:14px;">内容包括Python基本数据类型、Python列表、元组和字典、流程控制、函数式编程、面向对象编程、文件读写、异常控制、数据库编程、并发编程与网络编程、数据可视化分析、Python爬虫等。</span><br /> <span style="font-size:14px;"> 全套课程从Python基础开始介绍,逐步步入当前就业热点。将会带着大家从Python基础语法开始学习,为每个知识点都提供对应的代码实操、代码练习,逐步过渡到文件IO、数据库编程、并发编程、网络编程、数据分 析和网络爬虫等内容,本课程会从小案例起,至爬虫、数据分析案例终、以Python知识体系作为内在逻辑,以Python案例作为学习方式,最终达到“知行合一”。</span><br />
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页