Maximum sum
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 27256 | Accepted: 8329 |
Description
Given a set of n integers: A={a1, a2,..., an}, we define a function d(A) as below:
Your task is to calculate d(A).
Input
The input consists of T(<=30) test cases. The number of test cases (T) is given in the first line of the input.
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case.
Each test case contains two lines. The first line is an integer n(2<=n<=50000). The second line contains n integers: a1, a2, ..., an. (|ai| <= 10000).There is an empty line after each case.
Output
Print exactly one line for each test case. The line should contain the integer d(A).
Sample Input
1 10 1 -1 2 2 3 -3 4 -4 5 -5
Sample Output
13
Hint
In the sample, we choose {2,2,3,-3,4} and {5}, then we can get the answer.
Huge input,scanf is recommended.
Huge input,scanf is recommended.
Source
POJ Contest,Author:Mathematica@ZSU
DP: 最大子段和
1 #include <iostream> 2 #include <cstdio> 3 #include <cstring> 4 5 using namespace std; 6 7 int dp1[50010],dp2[50010]; 8 int a[50010]; 9 int n,t; 10 int maxD; 11 12 int main() 13 { 14 scanf("%d",&t); 15 while(t--) 16 { 17 memset(dp1,0,sizeof(dp1)); 18 memset(dp2,0,sizeof(dp2)); 19 scanf("%d",&n); 20 for(int i=1; i<=n; i++) 21 { 22 scanf("%d",&a[i]); 23 } 24 //dp for 最大子序列和 25 dp1[0]=-10000000; 26 for(int i=1; i<=n; i++) 27 { 28 if(dp1[i-1]<0) 29 dp1[i]=a[i]; 30 else 31 dp1[i]=dp1[i-1]+a[i]; 32 } 33 for(int i=1; i<=n; i++) 34 { 35 if(dp1[i-1]>dp1[i]) 36 { 37 dp1[i]=dp1[i-1]; 38 } 39 } 40 41 //reverse dp 42 dp2[n+1]=-10000000; 43 for(int i=n; i>=1; i--) 44 { 45 if(dp2[i+1]<0) 46 dp2[i]=a[i]; 47 else 48 dp2[i]=dp2[i+1]+a[i]; 49 } 50 for(int i=n; i>=1; i--) 51 { 52 if(dp2[i+1]>dp2[i]) 53 dp2[i]=dp2[i+1]; 54 } 55 56 //cal 57 maxD=-10000000; 58 for(int i=1; i<=n-1; i++) 59 { 60 if(dp1[i]+dp2[i+1] > maxD) 61 maxD=dp1[i]+dp2[i+1]; 62 } 63 64 printf("%d\n",maxD); 65 } 66 return 0; 67 }