MCMC贝叶斯方法用于加筋复合板的冲击载荷识别

本文介绍一种基于贝叶斯统计的冲击载荷识别方法,适用于加筋复合板的冲击位置及冲击力历史的识别。该方法利用一组参数表示冲击载荷,并采用马尔可夫链蒙特卡罗方法对后验分布进行采样以估计冲击参数。

前言

本文提出了一种统计方法,用于使用贝叶斯推理识别加筋复合板上的冲击位置和冲击力历史,其中明确包括来自建模误差和测量噪声的不确定性。通过使用一组参数表示冲击载荷,首先将空间域(撞击位置)和时域(冲击力历史)中的冲击载荷识别问题转换为参数识别问题。马尔可夫链蒙特卡罗方法用于对后验分布进行采样以估计影响参数。使用噪声有限元数据进行数值模拟研究,以证明所提方法的有效性。

简介

在航空航天工业中,复合材料已广泛用于商用和军用车辆的主要结构加载部件。设计复合结构的主要问题之一是由低速冲击引起的内部损坏,主要是分层,这些损坏难以检测并且可能显着降低结构的完整性。传感技术的最新进展以及计算和通信的发展使人们对调查和开发结构健康监测技术产生了浓厚的兴趣,这些技术可作为内置诊断系统整合到复合结构中。 对于复合结构,要准确评估损伤程度和残余强度,高效可靠的健康监测系统的首要任务是在发生碰撞事件时检测和识别冲击负荷。

贝叶斯方法对冲击载荷的识别

贝叶斯统计识别框架的主要思想是它处理系统参数,通常用向量表示,作为联合分布的随机变量。与确定性识别方法相反,该统计方法旨在计算给定测量数据集的不确定系统参数的后验(更新)分布。然后,最终参数估计可以作为后验的平均值或使用最大化后验分布的值。因此,在本研究中,要将贝叶斯框架结合到冲击载荷识别中,第一步是使用一组参数来表示冲击载荷。

图1.复合结构冲击力历史的近似表示

MCMC方法

作为一种强大的随机模拟技术,蒙特卡罗(MC)方法已被广泛用于研究与概率相关的问题。它可以非常高效,尤其是在可以生成独立样本时。遗憾的是,贝叶斯推断中使用的后验分布通常很复杂,因此很难为标准MC方法绘制独立样本。在这种情况下,MCMC模拟通常被用作采样的替代选择。MCMC的结果是样本的依赖序列(马尔可夫链),其具有等于目标分布的平稳分布。

数值模拟研究

正向碰撞模型的比较

为了证明所提出的冲击载荷识别方法的有效性,本节将进行数值研究。来自广泛使用的有限元软件MSC的噪声响应。Nastran用作测量数据。首先使用有限元法和第4节中给出的方法对前向碰撞模型进行比较。为方便起见,下文中,使用有限元方法的正向冲击模型称为有限元模型,本研究中使用的模型简称为前向冲击模型。

图4.数值研究中的加强复合板和传感器放置

图5.正向冲击模型和有限元模型对冲击响应的比较。

图6.数值研究中使用的冲击力历史

图7. MCMC在对海湾产生影响时的冲击参数样本,测量噪声水平为5%。

图8.已确定参数的直方图和拟合边际PDF,测量噪声水平为5%。

图9.已识别参数的正常图,测量噪声水平为5%。

图10.海湾的识别冲击力历史,置信区间为90%,测量噪声水平为5%。

图11.确定法兰上的冲击力历史,置信区间为90%,测量噪声水平为5%。

图12.确定肋骨上的冲击力历史,置信区间为90%,测量噪声水平为5%。

图13.在冲击位置识别出的响应,置信区间为90%,测量噪声水平为5%。

图14.测量和识别的冲击能量的比较。

6。结论

本研究提出了一种统计贝叶斯方法,用于识别加筋复合板上的冲击位置和冲击力历史。首先通过使用一组参数表示冲击载荷将问题转换为参数识别问题。在识别过程中包括表征受到已知冲击载荷的加强复合板的动态响应的前向冲击模型。通过组合测量数据和先验信息,贝叶斯定理用于更新参数的概率分布。特别地,MCMC方法用于对后验分布进行采样以估计影响参数。

转载于:https://www.cnblogs.com/tecdat/p/9481397.html

【论文复现】风光制氢合成氨系统优化研究(Python代码实现)内容概要:本文围绕“风光制氢合成氨系统优化研究”展开,重点介绍了基于Python代码实现的论文复现工作,旨在通过对风能、太阳能耦合制氢进而合成氨的综合能源系统进行建模与优化,提升可再生能源利用率与系统经济性。研究涵盖系统容量配置、能量调度策略、多能协同优化等核心内容,采用优化算法求解系统运行成本最小化或效率最大化目标,并提供完整的代码实现路径,便于科研人员复现实验结果并进一步开展创新研究。; 适合人群:具备一定Python编程基础,从事新能源系统优化、综合能源系统调度、氢能利用等相关领域的研究生、科研人员及工程技术人员,尤其适合有志于复现高水平论文成果的研究者。; 使用场景及目标:①复现SCI级别论文中的风光制氢合成氨系统优化模型;②掌握综合能源系统建模与优化求解方法;③学习Python在能源系统优化中的实际应用,包括数学建模、数据处理与算法实现;④为后续拓展至虚拟电厂、储能调度、碳交易机制等方向提供技术基础。; 阅读建议:建议读者结合文中提供的代码与网盘资源,按照文档结构逐步操作,重点关注模型构建逻辑与代码实现细节,同时推荐对比Matlab版本实现以加深对不同工具优劣的理解,强化科研复现能力与工程实践水平。
内容概要:本文围绕无槽永磁电机磁场解析问题展开,指出传统的原始场公式(RFF)在不同电机几何结构下可能引入显著误差,为此提出一种能够获得精确解析解的方法,并通过Matlab代码实现验证。文中还列举了多个相关科研方向和技术应用案例,涵盖无人机系统仿真与控制、路径规划、电力电子PWM技术、风光制氢合成氨系统优化、虚拟电厂调度、光伏功率预测、深度学【无槽永磁电机解】磁场问题的直接场解,称为原始场公式(RFF),在整个无槽永磁电机领域中可能导致显著的误差,这些误差随着机器几何形状的变化而显著不同,提出了一种达到解析解(Matlab代码实现)习模型优化等多个前沿领域,展示了基于Matlab/Simulink和Python的仿真建模与算法实现方法,强调借助成熟工具和优化算法提升科研效率的重要性。; 适合人群:具备一定工程背景和编程基础,从事电气工程、自动化、新能源、智能制造等领域研究的硕士、博士研究生及科研人员;熟悉Matlab/Simulink或Python编程,希望复现高水平论文或开展SCI论文研究的科研工作者。; 使用场景及目标:①解决无槽永磁电机建模中的精度问题,提升电机设计与分析的准确性;②复现顶级SCI/EI论文中的优化模型与算法(如虚拟电厂多时间尺度调度、Copula概率预测、NSGA-II路径规划等);③利用智能优化算法(如WOA、SSA、PSO等)与深度学习模型(如LSTM、CNN-LSTM)进行能源系统预测与调度研究;④构建无人机、电力系统、通信网络等复杂系统的仿真平台。; 阅读建议:建议读者按照文档提供的技术脉络逐步学习,优先掌握Matlab/Simulink和Python在科学计算中的基本应用,重点理解各类优化算法与物理模型的结合方式,结合所提供的网盘资源进行代码实践与调试,注重从“复现—改进—创新”的路径推进科研工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值