[BZOJ] 3875: [Ahoi2014&Jsoi2014]骑士游戏

\(f[x]\)为彻底杀死\(x\)号怪兽的代价

有转移方程
\[ f[x]=min\{k[x],s[x]+\sum f[v]\} \]
其中\(v\)\(x\)通过普通攻击分裂出的小怪兽

这个东西有后效性,因此考虑用图论方法做

如果把转移关系看成一张图,那么一开始所有点的\(dis\)都是\(k_i\),然后我们仿照SPFA,尝试最短路的松弛操作,并把该点会影响到的点加入队列,最终\(dis[1]\)即为所求

#include<algorithm>
#include<iostream>
#include<cstdio>
#include<vector>
#include<queue>
#define int long long
using namespace std;

inline int rd(){
  int ret=0,f=1;char c;
  while(c=getchar(),!isdigit(c))f=c=='-'?-1:1;
  while(isdigit(c))ret=ret*10+c-'0',c=getchar();
  return ret*f;
}
#define space() putchar(' ')
#define nextline() putchar('\n')
void pot(int x){if(!x)return;pot(x/10);putchar('0'+x%10);}
void out(int x){if(!x)putchar('0');if(x<0)putchar('-'),x=-x;pot(x);}

const int MAXN = 2000005;

int n;
int s[MAXN],k[MAXN],r[MAXN];
vector<int> vec[MAXN]; 

int nex[MAXN],to[MAXN];
int ecnt,head[MAXN];
inline void add(int x,int y){nex[++ecnt]=head[x];to[ecnt]=y;head[x]=ecnt;}
int dis[MAXN],inq[MAXN];
queue<int> Q;
signed main(){
    n=rd();int x;
    for(int i=1;i<=n;i++){
        s[i]=rd();k[i]=rd();r[i]=rd();
        for(int j=1;j<=r[i];j++){
            x=rd();
            vec[i].push_back(x);
            add(x,i); 
        }
    }
    for(int i=1;i<=n;i++) Q.push(i),dis[i]=k[i],inq[i]=1;
    while(!Q.empty()){
        int top=Q.front();Q.pop();inq[top]=0;
        int sum=s[top];
        for(int j=0;j<r[top];j++) sum+=dis[vec[top][j]];
        if(dis[top]>sum) dis[top]=sum;
        else continue;
        for(int i=head[top];i;i=nex[i]){
            int v=to[i];
            if(!inq[v]) Q.push(v),inq[v]=1;
        }
    }
    out(dis[1]);
    return 0;
}

转载于:https://www.cnblogs.com/ghostcai/p/9872869.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值