51nod1040最大公约数之和(欧拉函数)

题面

传送门

题解

这种题目就是推倒推倒

\[\sum_{i=1}^n \gcd(i,n)=\sum_{i|n}i\sum_{j=1}^n[\gcd(j,n)=i]\]

\[\sum_{i=1}^n \gcd(i,n)=\sum_{i|n}i\sum_{j=1}^{\frac{n}{i}}[\gcd(j,\frac{n}{i})=1]\]

\[\sum_{i=1}^n \gcd(i,n)=\sum_{i|n}i\varphi({\frac{n}{i}})\]

然后暴力就行了

//minamoto
#include<bits/stdc++.h>
#define R register
#define ll long long
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=1e5+5;
bitset<N>vis;int p[N],phi[N],c[N],v[N],top,n,m,t,sqr;ll res;
void init(int n){
    phi[1]=1;
    fp(i,2,n){
        if(!vis[i])p[++m]=i,phi[i]=i-1;
        for(R int j=1;j<=m&&1ll*i*p[j]<=n;++j){
            vis[i*p[j]]=1;
            if(i%p[j]==0){phi[i*p[j]]=phi[i]*p[j];break;}
            phi[i*p[j]]=phi[i]*(p[j]-1);
        }
    }
}
int Phi(int n){
    if(n<=sqr)return phi[n];
    int res=n;
    for(R int i=1;i<=m&&p[i]<=n;++i)if(n%p[i]==0){
        while(n%p[i]==0)n/=p[i];
        res=res/p[i]*(p[i]-1);
    }
    if(n!=1)res=res/n*(n-1);
    return res;
}
void dfs(int pos,int now){
    if(pos==top+1)return res+=1ll*now*Phi(n/now),void();
    for(int i=0;i<=c[pos];++i,now*=v[pos])dfs(pos+1,now);
}
int main(){
//  freopen("testdata.in","r",stdin);
    scanf("%d",&n),init(sqr=N-5);
    t=n;
    fp(i,1,m)if(t%p[i]==0){
        v[++top]=p[i];
        while(t%p[i]==0)++c[top],t/=p[i];
    }
    if(t!=1)v[++top]=t,c[top]=1;
    dfs(1,1);
    printf("%lld\n",res);
    return 0;
}

转载于:https://www.cnblogs.com/bztMinamoto/p/10428230.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值