python房价数据分析波士顿_Python编程&数据科学入门 - 波士顿房价数据分析

本文使用Python的Matplotlib和Seaborn库对波士顿房价数据集进行分析,发现房价与犯罪率(CRIM)、平均房间数(RM)及下层经济阶层比例(LSTAT)有显著相关性,其中RM和房价呈正相关,LSTAT和房价呈负相关。
摘要由CSDN通过智能技术生成

本文将使用Python的绘图库Matplotlib,通过数据可视化分析影响房价的主要因素。

波士顿房价数据集

波士顿房价数据集来源于1978年美国某经济学杂志上。该数据集包含若干波士顿房屋的价格及其各项数据,每个数据项包含14个数据,分别是犯罪率、是否在河边和平均房间数等相关信息,其中最后一个数据是房屋中间价。

变量名称解释

CRIM: per capita crime rate by town 每个城镇人均犯罪率

ZN: proportion of residential land zoned for lots over 25,000 sq.ft. 超过25000平方英尺用地划为居住用地的百分比

INDUS: proportion of non-retail business acres per town 非零售商用地百分比

CHAS: Charles River dummy variable (= 1 if tract bounds river; 0 otherwise) 是否靠近查尔斯河

NOX: nitric oxides concentration (parts per 10 million) 氮氧化物浓度

RM: average number of rooms per dwelling 住宅平均房间数目

AGE: proportion of owner-occupied units built prior to 1940 1940年前建成自用单位比例

DIS: weighted distances to five Boston employment centres 到5个波士顿就业服务中心的加权距离

RAD: index of accessibility to radial highways 无障碍径向高速公路指数

TAX: full-value property-tax rate per $

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值