题目大意:
让每天都能吃到西瓜。
最少须要花多少钱。
思路分析:
dp[pos] 就表示 要让 前i天每天都有西瓜吃。最少须要花多少钱。
那么假设你买这个西瓜的话。
那么这个西瓜能吃的持续时间都要更新一下。
然后再在每一个西瓜的更新部分取最小的,就能够是这个点所能得到的最小值。
事实上就是 dp[i] = min (dp[i] , dp[ j - k +1] + a[j]);
可是枚举前面的时候会超时,就用线段树维护。
5
1 2 3 4 5
1 2 2 2 2
给出这组数据是说,每次买西瓜的时候,都要和前一次的大小做比較,来表示西瓜在这里刚好吃完。
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#define maxn 55555
#define lson num<<1,s,mid
#define rson num<<1|1,mid+1,e
#define inf ((1LL)<<60)
typedef long long LL;
using namespace std;
LL dp[maxn<<2];
void pushdown(int num)
{
if(dp[num]!=inf)
{
dp[num<<1]=min(dp[num<<1],dp[num]);
dp[num<<1|1]=min(dp[num<<1|1],dp[num]);
dp[num]=inf;
}
}
void build(int num,int s,int e)
{
dp[num]=inf;
if(s==e)
{
return;
}
int mid=(s+e)>>1;
build(lson);
build(rson);
}
void update(int num,int s,int e,int l,int r,LL val)
{
if(l<=s && r>=e)
{
dp[num]=min(val,dp[num]);
return;
}
pushdown(num);
int mid=(s+e)>>1;
if(l<=mid)update(lson,l,r,val);
if(r>mid)update(rson,l,r,val);
}
LL query(int num,int s,int e,int pos)
{
if(s==e)
{
return dp[num];
}
pushdown(num);
int mid=(s+e)>>1;
if(pos<=mid)return query(lson,pos);
else return query(rson,pos);
}
int cost[maxn];
int last[maxn];
int main()
{
int n;
while(cin>>n)
{
for(int i=1;i<=n;i++)cin>>cost[i];
for(int i=1;i<=n;i++)cin>>last[i];
build(1,1,n);
int pos=last[1];
if(pos>n)pos=n;
update(1,1,n,1,pos,(LL)cost[1]);
for(int i=2;i<=n;i++)
{
LL cur=min(query(1,1,n,i),query(1,1,n,i-1));
pos=i+last[i]-1;
if(pos>n)pos=n;
update(1,1,n,i,pos,cur+(LL)cost[i]);
}
cout<<query(1,1,n,n)<<endl;
}
return 0;
}
/*
5
1 2 3 4 5
1 2 2 2 2
*/