数学模型

Catalan

卡特兰数 — 计数的映射方法的伟大胜利

Stirling

斯特林数

容斥

容斥原理(翻译)

莫比乌斯反演与筛法

\[g(n)=\sum_{d|n}f(d)\] \[f(n)=\sum_{d|n}{\mu(d)g(\frac{n}{d})}\]
blogs:

  1. 莫比乌斯反演入门
  2. 【算法】 莫比乌斯反演 -boshi
  3. 我也不知道什么是"莫比乌斯反演"和"杜教筛"
  4. 浅谈一类积性函数的前缀和
  5. 莫比乌斯反演总结
  6. 常见积性函数的筛法

题目:

二项式反演

\[f(n)=\sum_{k=p}^n (\begin{matrix} n \\ k \end{matrix})g(k)\]
\[g(n)=\sum_{k=p}^n(-1)^{n-k}(\begin{matrix} n \\ k \end{matrix})f(k)\]
莫比乌斯函数、二项式、斯特林数以及它们的反演

中国剩余定理

中国剩余定理与扩展 Lucas定理与扩展 学习笔记

  • [codevs3990]中国余数定理 2
    \[ \begin{Bmatrix} x \equiv c_1 (mod\; m_1)\\ x \equiv c_2 (mod\; m_2)\\ \cdots\\ x \equiv c_n (mod\; m_n) \end{Bmatrix} \]
    其中\((m_i, m_j)==1, i\not= j\)
    \(M=\prod_{i=1}^nm_i\)
    \(x=(\sum_{i=1}^nc_i*\frac{M}{m_i}*inv(\frac{M}{m_i}, m_i))mod\;M\)

  • [POJ2891]Strange Way to Express Integers
    \[ \begin{Bmatrix} x \equiv c_1 (mod\; m_1)\\ x \equiv c_2 (mod\; m_2)\\ \cdots\\ x \equiv c_n (mod\; m_n) \end{Bmatrix} \]
    对于两个方程
    \[x \equiv c_1 (mod\; m_1)\\ x \equiv c_2 (mod\; m_2)\]
    合并为一个,有解条件为\((m_1, m_2)|(c_2-c_1)\)
    \[d=(m_1, m_2), m=\frac{m_1m_2}{d}\\ c=(inv(\frac{m_1}{d}, \frac{m_2}{d})*\frac{c_2-c_1}{d})\% (\frac{m_2}{d})*m_1+c_1\]
    最终\(x=c\%m\)

  • [luogu4720]【模板】扩展卢卡斯
    \(C_n^m%p\)
    唯一分解\(p=\prod_{i=1}^qp_i^{k_i}\)
    \[ \begin{Bmatrix} x \equiv C_n^m \%p_1^{k_1} (mod\; p_1^{k_1})\\ x \equiv C_n^m \%p_2^{k_2} (mod\; p_2^{k_2})\\ \cdots\\ x \equiv C_n^m \%p_q^{k_q} (mod\; p_q^{k_q}) \end{Bmatrix} \]
    \(x\)即为答案

公式:

  1. \[g(n)=\sum_{d|n}f(d)\] \[f(n)=\sum_{d|n}{\mu(d)g(\frac{n}{d})}\]
  2. \[f(n)=\sum_{k=p}^n (\begin{matrix} n \\ k \end{matrix})g(k)\]
    \[g(n)=\sum_{k=p}^n(-1)^{n-k}(\begin{matrix} n \\ k \end{matrix})f(k)\]
  3. \[g(n)=\sum_{n|d}{f(d)[d \leq m]}\] \[f(n)=\sum_{n|d}{\mu(\frac{d}{n})g(d)[d \leq m]}\]
  4. 如果\(f(n)\)是积性函数,且\((x, y) = 1\),则有\[f(xy)=f(x)f(y)\]
  5. \[\sum_{i=1}^{n}{i[(i, n) == 1]}= \frac{\varphi(n)*n}2\]
    (用到结论:\(if (i, n) == 1, then (n-i, n) = 1\))
  6. \[(id*\mu)(i)=\varphi(i)\]
    \[(\varphi*I)(i)=id(i)\]
    \[(\mu*I)(i)=e(i)\]
  7. \[[n == 1]=\sum_{d|n}{\mu(d)}\]
  8. \[n=\sum_{d|n}{\varphi(d)}\]
  9. \[\sum_{i=1}^{n}{\sum_{j=1}^{m}ij}=\frac{n^2(n+1)^2}{4}\]
  10. 除数函数 \[\sigma_k(n)=\sum_{d|n}{d^k}\]
    约数个数函数 \[\tau(n)=\sigma_0(n)=\sum_{d|n}1\]
    约数和函数\[\sigma(n)=\sigma_1(n)=\sum_{d|n}d\]
  11. \[\sum_{i=1}^ni=\frac{n(n+1)}{2}\]
    \[\sum_{i=1}^ni^2=\frac{(n+1)(2n+1)n}{6}\]
    \[\sum_{i=1}^ni^3=\frac{n^2(n+1)^2}{4}\]
  12. \[\varphi(ij)=\frac{\varphi(i)\varphi(j)(i,j)}{\varphi((i,j))}\]
  13. \[[f(x) == 1] = e(f(x))=(\mu*I)(f(x))\](常用于引进\(\mu\)以进行莫比乌斯反演,如[NOI2016]循环之美)
  14. \[(\begin{matrix} 0 \\ n \end{matrix})+(\begin{matrix} 1 \\ n \end{matrix})+(\begin{matrix} 2 \\ n \end{matrix})+...+(\begin{matrix} n \\ n \end{matrix})=2^n\]
  15. \[d(ij)=\sum_{x|i}\sum_{y|j}[gcd(x, y) == 1]\]
  16. \[ \begin{Bmatrix} x \equiv c_1 (mod\; m_1)\\ x \equiv c_2 (mod\; m_2)\\ \cdots\\ x \equiv c_n (mod\; m_n) \end{Bmatrix} \]
    其中\((m_i, m_j)==1, i\not= j\)
    \(M=\prod_{i=1}^nm_i\)
    \(x=(\sum_{i=1}^nc_i*\frac{M}{m_i}*inv(\frac{M}{m_i}, m_i))mod\;M\)
  17. \[ \begin{Bmatrix} x \equiv c_1 (mod\; m_1)\\ x \equiv c_2 (mod\; m_2)\\ \cdots\\ x \equiv c_n (mod\; m_n) \end{Bmatrix} \]
    对于两个方程
    \[x \equiv c_1 (mod\; m_1)\\ x \equiv c_2 (mod\; m_2)\]
    合并为一个,有解条件为\((m_1, m_2)|(c_2-c_1)\)
    \[d=(m_1, m_2), m=\frac{m_1m_2}{d}\\ c=(inv(\frac{m_1}{d}, \frac{m_2}{d})*\frac{c_2-c_1}{d})\% (\frac{m_2}{d})*m_1+c_1\]
    最终\(x=c\%m\)
  18. \(C_n^m%p\)
    唯一分解\(p=\prod_{i=1}^qp_i^{k_i}\)
    \[ \begin{Bmatrix} x \equiv C_n^m \%p_1^{k_1} (mod\; p_1^{k_1})\\ x \equiv C_n^m \%p_2^{k_2} (mod\; p_2^{k_2})\\ \cdots\\ x \equiv C_n^m \%p_q^{k_q} (mod\; p_q^{k_q}) \end{Bmatrix} \]
    \(x\)即为答案

转载于:https://www.cnblogs.com/zerolt/p/9281380.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值