圆内接三角形(X神的代码玩的真好)

设$S$为半径等于$1$的圆内接三角形的面积,则$4S+\dfrac 9S$的最小值是_______.

【分析与解】

先证明$S$的最大值为$\dfrac{3\sqrt 3}4$.设$\triangle ABC$内接于单位圆$O$,且顶点按逆时针排列.设弧$AB,BC,CA$所对的圆心角分别为$\alpha$,$\beta$,$2\pi -\alpha-\beta$,不妨设$\alpha,\beta\in (0,\pi]$,则\[\begin{split} S&\leqslant \dfrac 12\left[\sin\alpha+\sin\beta-\sin\left(\alpha+\beta\right)\right]\\
&\leqslant \dfrac 12\left[\left(1-\cos\beta\right)\sin\alpha-\sin\beta\cos\alpha+\sin\beta\right]\\
&\leqslant \dfrac 12\left[\sqrt{(1-\cos\beta)^2+\sin^2\beta}+\sin\beta\right]\\
&=\dfrac 12\left[\sqrt{2-2\cos\beta}+\sin\beta\right]\\
&=\sin\dfrac{\beta}2\left(1+\cos\dfrac{\beta}2\right)
,\end{split} \]令$t=1+\cos\dfrac{\beta}2$,则$t\in[1,2)$,有$$S\leqslant t\sqrt{1-(t-1)^2}=\sqrt{t^3(6-3t)}\cdot\dfrac{1}{\sqrt 3}\leqslant \dfrac{3\sqrt 3}4,$$当$\triangle ABC$为正三角形取得等号.因此$S$的最大值为$\dfrac{3\sqrt 3}4$,而在$\left(0,\dfrac{3\sqrt 3}4\right]$上,$4S+\dfrac{9}S$单调递减,于是所求的最小值为$$\left.\left(4S+\dfrac 9S\right)\right|_{S=\frac{3\sqrt 3}4}=7\sqrt 3.$$


以上内容来自X神,我仅仅是复制粘贴了其中的代码!


转载于:https://www.cnblogs.com/xuebajunlutiji/p/6096388.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值