dubbo的官方描述很简洁,好的封装就是这么强大, 让你用起来丝毫不费力。我们今天就费力的看一下dubbo是如何提供cache功能的。有想直接使用的童鞋,就可以跳过下面内容直面看官方提供的简单例子。
按照SPI的要求,我们从配置文件中可以看到dubbo提供的三种缓存接口的入口:
threadlocal=com.alibaba.dubbo.cache.support.threadlocal.ThreadLocalCacheFactory
lru=com.alibaba.dubbo.cache.support.lru.LruCacheFactory
jcache=com.alibaba.dubbo.cache.support.jcache.JCacheFactory
先来看一下dubbo提供的AbstractCacheFactory
的细节:
public abstract class AbstractCacheFactory implements CacheFactory {
private final ConcurrentMap<String, Cache> caches = new ConcurrentHashMap<String, Cache>();
public Cache getCache(URL url) {
String key = url.toFullString();
Cache cache = caches.get(key);
if (cache == null) {
caches.put(key, createCache(url));
cache = caches.get(key);
}
return cache;
}
protected abstract Cache createCache(URL url);
}
很直观的看得出,该类完成了具体cache实现的实例化工作(注意getCache
的返回类型Cache,该接口规范了不同缓存的实现),接下来我们就分三部分来具体看一下不同的缓存接口的具体实现。
ThreadLocal
如果你的配置如下:
<dubbo:reference interface="com.foo.BarService" cache="threadlocal" />
那就表明你使用的是该类型的缓存,根据SPI机制,会执行下面这个工厂类:
public class ThreadLocalCacheFactory extends AbstractCacheFactory {
protected Cache createCache(URL url) {
return new ThreadLocalCache(url);
}
}
注意该类继承了上面提到的AbstractCacheFactory
。可以看出,真正实例化的具体缓存层实现是ThreadLocalCache
类型。由于此类型是基于线程本地变量的,所以非常简单:
public class ThreadLocalCache implements Cache {
private final ThreadLocal<Map<Object, Object>> store;
public ThreadLocalCache(URL url) {
this.store = new ThreadLocal<Map<Object, Object>>() {
@Override
protected Map<Object, Object> initialValue() {
return new HashMap<Object, Object>();
}
};
}
public void put(Object key, Object value) {
store.get().put(key, value);
}
public Object get(Object key) {
return store.get().get(key);
}
}
这里注意的是,为了遵循接口定义才需要初始化时传入url
参数,但其实该类型的缓存实现是完全不需要额外参数的。
最后要叮嘱的是,该缓存应用场景为:
比如一个页面渲染,用到很多portal,每个portal都要去查用户信息,通过线程缓存,可以减少这种多余访问。
场景描述的核心内容是当前请求的上下文,可以结合dubbo的线程模型来更好的消化这一点。也许我们以后还会单独来分析这个主题。
LRU
类似ThreadLocal,我们就不再重复列举对应的工厂方法了,直接看LruCache
类的实现:
public class LruCache implements Cache {
private final Map<Object, Object> store;
public LruCache(URL url) {
final int max = url.getParameter("cache.size", 1000); //定义了缓存的容量
this.store = new LinkedHashMap<Object, Object>() {
private static final long serialVersionUID = -3834209229668463829L;
@Override
protected boolean removeEldestEntry(Entry<Object, Object> eldest) { //jdk提供的接口,用于移除最旧条目的需求
return size() > max;
}
};
}
public void put(Object key, Object value) {
synchronized (store) { //注意这里的同步条件
store.put(key, value);
}
}
public Object get(Object key) {
synchronized (store) { //注意这里的同步条件
return store.get(key);
}
}
}
相比ThreadLocal,可以看出,该类型的缓存是跨线程的,也匹配我们常见的缓存场景。
JCache
对于我这种java新手,什么是JCache,显然需要科普一下,这里给出了我找到的几篇不错的文章:官府,草根,小栗子,注解篇,中文完美篇。由于内容太多,我就不胡乱翻译了~~
由于这部分的代码太简单,节省篇幅就不列源码了。不过我们的项目缓存是基于redis的,而我并没有找到支持JCache的redis客户端,不知道大家有没有推荐的啊~??
如何解析“cache”属性
那么,cache层的逻辑是如何一步一步“注入”到我们的业务逻辑里呢?这还是要追溯到dubbo的过滤器上,我们知道在dubbo初始化指定protocol的时候,会使用装饰器模式把所有需要加载的过滤器封装到目标protocol上,这个细节指引我来查看ProtocolFilterWrapper
类:
refer() ---> buildInvokerChain()
|
V
private static <T> Invoker<T> buildInvokerChain(final Invoker<T> invoker, String key, String group) {
Invoker<T> last = invoker;
List<Filter> filters = ExtensionLoader.getExtensionLoader(Filter.class).getActivateExtension(invoker.getUrl(), key, group);
if (filters.size() > 0) {
for (int i = filters.size() - 1; i >= 0; i --) {
final Filter filter = filters.get(i);
final Invoker<T> next = last;
last = new Invoker<T>() {
public Class<T> getInterface() {
return invoker.getInterface();
}
public URL getUrl() {
return invoker.getUrl();
}
public boolean isAvailable() {
return invoker.isAvailable();
}
public Result invoke(Invocation invocation) throws RpcException {
return filter.invoke(next, invocation);
}
public void destroy() {
invoker.destroy();
}
@Override
public String toString() {
return invoker.toString();
}
};
}
}
return last;
}
注意ExtensionLoader.getExtensionLoader(Filter.class).getActivateExtension(invoker.getUrl(), key, group);
这一行,单步调试可以得知它会返回所有需要“注入”的Filter逻辑,当然也包含我们关注的缓存:com.alibaba.dubbo.cache.filter.CacheFilter
。
注意看该类声明的开头:
@Activate(group = {Constants.CONSUMER, Constants.PROVIDER}, value = Constants.CACHE_KEY)
这一行是关键哟,上面提到的getActivateExtension
方法就是靠这一行注解工作的。dubbo以这种设计风格完成了大多数的功能,所以对于研究dubbo源码的童鞋,一定要多多注意。
经历了这一圈下来,所有过滤器就已经注入到我们的服务当中了。
业务层如何使用cache
最后再来仔细看一下com.alibaba.dubbo.cache.filter.CacheFilter
类的invoke方法:
public Result invoke(Invoker<?> invoker, Invocation invocation) throws RpcException {
if (cacheFactory != null && ConfigUtils.isNotEmpty(invoker.getUrl().getMethodParameter(invocation.getMethodName(), Constants.CACHE_KEY))) {
Cache cache = cacheFactory.getCache(invoker.getUrl().addParameter(Constants.METHOD_KEY, invocation.getMethodName()));
if (cache != null) {
String key = StringUtils.toArgumentString(invocation.getArguments());
if (cache != null && key != null) {
Object value = cache.get(key);
if (value != null) {
return new RpcResult(value);
}
Result result = invoker.invoke(invocation);
if (! result.hasException()) {
cache.put(key, result.getValue());
}
return result;
}
}
}
return invoker.invoke(invocation);
}
可以看出,这里根据不同的配置会初始化并使用不同的缓存实现。