[Leetcode] Binary Tree Maximum Path Sum 二叉树最大路径和

Binary Tree Maximum Path Sum

Given a binary tree, find the maximum path sum.

The path may start and end at any node in the tree.

For example: Given the below binary tree,

   1
  / \
 2   3

Return 6.

栈迭代

复杂度

时间 O(b^(h+1)-1) 空间 O(h) 递归栈空间 对于二叉树b=2

思路

首先我们分析一下对于指定某个节点为根时,最大的路径和有可能是哪些情况。第一种是左子树的路径加上当前节点,第二种是右子树的路径加上当前节点,第三种是左右子树的路径加上当前节点(相当于一条横跨当前节点的路径),第四种是只有自己的路径。乍一看似乎以此为条件进行自下而上递归就行了,然而这四种情况只是用来计算以当前节点根的最大路径,如果当前节点上面还有节点,那它的父节点是不能累加第三种情况的。所以我们要计算两个最大值,一个是当前节点下最大路径和,另一个是如果要连接父节点时最大的路径和。我们用前者更新全局最大量,用后者返回递归值就行了。

代码

public class Solution {
    
    private int max = Integer.MIN_VALUE;
    
    public int maxPathSum(TreeNode root) {
        helper(root);
        return max;
    }
    
    public int helper(TreeNode root) {
        if(root == null) return 0;
        int left = helper(root.left);
        int right = helper(root.right);
        //连接父节点的最大路径是一、二、四这三种情况的最大值
        int currSum = Math.max(Math.max(left + root.val, right + root.val), root.val);
        //当前节点的最大路径是一、二、三、四这四种情况的最大值
        int currMax = Math.max(currSum, left + right + root.val);
        //用当前最大来更新全局最大
        max = Math.max(currMax, max);
        return currSum;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值