51nod 编辑距离问题(动态规划)

编辑距离问题

给定两个字符串S和T,对于T我们允许三种操作:
(1) 在任意位置添加任意字符
(2) 删除存在的任意字符
(3) 修改任意字符 

问最少操作多少次可以把字符串T变成S?
例如: S=  “ABCF”   T = “DBFG”
那么我们可以
(1) 把D改为A
(2) 删掉G
(3) 加入C

所以答案是3。

输入
第1行:字符串a(a的长度 <= 1000)。
第2行:字符串b(b的长度 <= 1000)。
输出
输入a和b的编辑距离
输入示例
kitten
sitting
输出示例
3
请选取你熟悉的语言,并在下面的代码框中完成你的程序,注意数据范围,最终结果会造成Int32溢出,这样会输出错误的答案。
不同语言如何处理输入输出,请查看下面的语言说明。
【分析】
对于两个字符串a和b,dp[i][j]记录a的前i个字符转换到b的前j个字符的最小编辑距离。那么很容易得到转移方程 dp[i][j] = min(dp[i][j], dp[i-1][j-1] + a[i-1] == b[j-1] ? 0 : 1)。对每个dp[i][j],我们考虑直接从dp[i-1][j]或dp[i][j-1]加一个字符,所以初始为dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + 1。对于dp[0][i]和dp[i][0],显然都等于i。
#include <iostream>
#include <cstring>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <time.h>
#include <string>
#include <map>
#include <stack>
#include <vector>
#include <set>
#include <queue>
#define inf 0x3f3f3f3f
#define mod 1000000007
typedef long long ll;
using namespace std;
char a[1005];
char b[1005];
int dp[1005][1005];
int pre[1005][1005];

int main()
{
    int i,j,len1,len2,last;
    memset(dp,0,sizeof(dp));
    memset(pre,0,sizeof(pre));
    cin>>a>>b;
    int n = strlen(a), m = strlen(b);
    for(int i = 0; i <= n; i ++) dp[i][0] = i;
    for(int i = 0; i <= m; i ++) dp[0][i] = i;
    for(int i = 1; i <= n; i ++)
    {
        for(int j = 1; j <=m; j ++)
        {
            dp[i][j] = min(dp[i-1][j], dp[i][j-1]) + 1;
            dp[i][j] = min(dp[i][j], dp[i-1][j-1] + (a[i-1] != b[j-1]));
        }
    }
    printf("%d\n", dp[n][m]);
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/jianrenfang/p/5710767.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值