(原)mkl的cblas_sgemm和cblas_dgemm

转载请注明出处:

http://www.cnblogs.com/darkknightzh/p/5553336.html

参考网址:

mkl-11.3.2-developer-reference-c_0.pdf(intel官网下载)

http://goodluck1982.blog.sohu.com/94851969.html

 

void cblas_sgemm(const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE transa, const CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const float alpha, const float *a, const MKL_INT lda, const float *b, const MKL_INT ldb, const float beta, float *c, const MKL_INT ldc);

void cblas_dgemm(const CBLAS_LAYOUT Layout, const CBLAS_TRANSPOSE transa, const CBLAS_TRANSPOSE transb, const MKL_INT m, const MKL_INT n, const MKL_INT k, const double    alpha, const double *a, const MKL_INT lda, const double *b, const MKL_INT ldb, const double beta, double *c, const MKL_INT ldc);

 参考intel的官方pdf手册

计算:C := alpha*op(A)*op(B) + beta*C

注意:a、b、c指输入的缓冲区,A、B、C指真正需要计算的缓冲区(如果需要对一小块矩阵进行计算,这两组就不一样了)。

 

其中,op(X) 表示:

op(X) = X,原始矩阵

op(X) = ${{X}^{T}}$,转置矩阵

op(X) = ${{X}^{H}}$,共轭矩阵

 

A为m*k的矩阵(m行k列)

B为k*n的矩阵

C为m*n的矩阵

 

参数:

Layout:表示二维矩阵存储是按行优先(CblasRowMajor)还是列优先(CblasColMajor)。

            C++里面是行优先存储的;fortran是列优先存储数据。(为了让fortran调用方便吧)

transa、transb:可为CblasNoTrans、CblasTrans、CblasConjTrans

m:矩阵a和c的行数

n:矩阵b和c的列数

k:矩阵a的列数,矩阵c的行数

lda:行优先 & 不转置时,$lda\ge \max (1,k)$

       行优先 & 转置时,$lda\ge \max (1,m)$

       由于用的是C++,不太可能会使用fortran,列优先就不管了(ldb和ldc也不考虑)

ldb:行优先 & 不转置时,ldb*k的矩阵,b矩阵左上角包含n*k的B矩阵

       行优先 & 转置时,ldb*n的矩阵,b矩阵左上角包含k*n的B矩阵

ldc:行优先时,$ldc\ge \max (1,n)$

       由于用的是C++,不太可能会使用fortran,列优先就不管了

 

如上面注意的地方所说,如果不是计算小块矩阵的话,实际上lda、ldb、ldc和各自的m、n、k相等(注意行优先和列优先)

 

小块的问题,可见参考网址。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值