洛谷3389:【模板】高斯消元法——题解

https://www.luogu.org/problemnew/show/P3389

给定一个线性方程组,对其求解

板子在此。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cctype>
#include<cmath>
using namespace std;
typedef double dl;
const int N=103;
inline int read(){
    int X=0,w=0;char ch=0;
    while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
    while(isdigit(ch))X=(X<<3)+(X<<1)+(ch^48),ch=getchar();
    return w?-X:X;
}
dl f[N][N],ans[N];
inline bool gauss(int n,int m){
    for(int i=1;i<=n;i++){
        if(f[i][i]==0)return 0;
        int l=i;
        for(int j=i+1;j<=n;j++){
            if(fabs(f[l][i])<fabs(f[j][i]))l=j;
        }
        if(l!=i){
            for(int j=i;j<=m;j++)
                swap(f[i][j],f[l][j]);
        }
        for(int j=i+1;j<=n;j++){
            dl t=f[j][i]/f[i][i];
            for(int k=i;k<=m;k++)
                f[j][k]-=t*f[i][k];
        }
    }
    for(int i=n;i>=1;i--){
        for(int j=i+1;j<=n;j++)
            f[i][m]-=ans[j]*f[i][j];
        ans[i]=f[i][m]/f[i][i];
    }
    return 1;
}
int main(){
    int n=read();
    for(int i=1;i<=n;i++){
        for(int j=1;j<=n+1;j++){
            f[i][j]=read();
        }
    }
    if(!gauss(n,n+1))puts("No Solution");
    else{
        for(int i=1;i<=n;i++){
            printf("%.2lf\n",ans[i]);
        }
    }
    return 0;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

转载于:https://www.cnblogs.com/luyouqi233/p/8723201.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值