[BZOJ2216]Lightning Conductor

原来决策单调性指的是这个东西...

一些DP可以写成$f_i=\max\limits_{j\lt i}g(i,j)$,设$p_i(p_i<j)$表示使得$g(i,j)$最大的$j$,如果$p_1\leq\cdots\leq p_n$,那么我们称这个DP满足决策单调性,称$p_i$为$i$的最优决策点

决策单调性可以用整体二分来做,设当前要处理$f_{l\cdots r}$且最优决策点的范围是$[h,t]$,那么我们先求出$f_{mid}$,这个直接暴力从$\left[h,\min(mid,t)\right]$转移即可,假设$mid$的最优决策点是$d$,那么我们可以递归做$(l,mid-1,h,d)$和$(mid+1,r,d,t)$,二分总共$O(\log_2n)$层,每一层最多$O(n)$,总时间复杂度$O\left(n\log_2n\right)$

这题的DP方程是$f_i=\max\{a_j+\sqrt{\left|i-j\right|}\}-a_i$,为了把绝对值去掉,我们作限制$j\lt i$,正反各做一遍取最大值即可

$f_i=\max\limits_{j\lt i}\{a_j+\sqrt{i-j}\}-a_i$

设$i$的最优决策点为$p$,那么对于$\forall k\lt p$有$a_k+\sqrt{i-k}\leq a_p+\sqrt{i-p}$

因为$\sqrt{x+1}-\sqrt x$是单调递减的,所以$\sqrt{i+1-k}-\sqrt{i-k}\leq\sqrt{i+1-p}-\sqrt{i-p}$

把它加到上面,我们得到$a_k+\sqrt{i+1-k}\leq a_p+\sqrt{i+1-p}$

这也就说明了$i+1$的最优决策点$\geq p$,也就是说这个DP满足决策单调性

#include<stdio.h>
#include<math.h>
typedef double du;
du max(du a,du b){return ceil(a>b?a:b);}
void swap(int&a,int&b){
	int c=a;
	a=b;
	b=c;
}
int a[500010];
void solve(du*f,int l,int r,int h,int t){
	if(l>r||h>t)return;
	int mid,i,d;
	du res=-2147483647.;
	mid=(l+r)>>1;
	for(i=h;i<=t&&i<=mid;i++){
		if(a[i]+sqrt(mid-i)>res){
			res=a[i]+sqrt(mid-i);
			d=i;
		}
	}
	f[mid]=res-a[mid];
	solve(f,l,mid-1,h,d);
	solve(f,mid+1,r,d,t);
}
du f[500010],g[500010];
int main(){
	int n,i;
	scanf("%d",&n);
	for(i=1;i<=n;i++)scanf("%d",a+i);
	solve(f,1,n,1,n);
	for(i=1;i<=n>>1;i++)swap(a[i],a[n-i+1]);
	solve(g,1,n,1,n);
	for(i=1;i<=n;i++)printf("%.0lf\n",max(f[i],g[n-i+1]));
}

转载于:https://www.cnblogs.com/jefflyy/p/9273136.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值