题目链接:http://poj.org/problem?id=3233。
题意:给出一个公式求这个式子模m的解;
分析:本题就是给的矩阵,所以非常显然是矩阵高速幂,但有一点。本题k的值非常大。所以要用二分求和来降低执行时间。
代码:
#include <set>
#include <map>
#include <stack>
#include <queue>
#include <math.h>
#include <vector>
#include <string>
#include <utility>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <functional>
using namespace std;
struct Matrax{
long long m[50][50];
}ter;
int n,m;
Matrax add(Matrax a,Matrax b){
Matrax p;
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
p.m[i][j]=a.m[i][j]+b.m[i][j];
p.m[i][j]%=m;
// cout<<p.m[i][j]<<" ";
}
// cout<<endl;
}
return p;
}//矩阵加法
Matrax muli(Matrax a,Matrax b){
Matrax p;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
p.m[i][j]=0;
for(int k=0;k<n;k++){
p.m[i][j]+=a.m[i][k]*b.m[k][j];
p.m[i][j]%=m;
}
}
return p;
}//矩阵乘法
Matrax quick_mod(Matrax a,int b){
Matrax ans=ter;
while(b){
if(b&1){
ans=muli(ans,a);
b--;
}
else {
b>>=1;
a=muli(a,a);
}
}
return ans;
}//高速幂
Matrax sum(Matrax a,int k){
if(k==1)return a;
Matrax ans,b;
ans=sum(a,k/2);
if(k&1){
b=quick_mod(a,k/2+1);
ans=add(ans,muli(ans,b));
ans=add(ans,b);
}
else {
b=quick_mod(a,k/2);
ans=add(ans,muli(ans,b));
}
return ans;
}//二分求和
int main(){
int k;
while(scanf("%d%d%d",&n,&k,&m)!=EOF){
Matrax A,tmp;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++){
scanf("%I64d",&A.m[i][j]);
ter.m[i][j]=(i==j);
tmp.m[i][j]=0;
}
tmp=sum(A,k);
for(int i=0;i<n;i++){
for(int j=0;j<n;j++)
cout<<tmp.m[i][j]<<" ";
cout<<endl;
}
}
return 0;
}