tag:状态压缩
【题目大意】
n个灯,m个按钮,每个按钮都可以控制所有灯,给出每个按钮对每个灯的影响,求从全开到全关的最短步数。
【题目分析】
每盏灯只有两个状态,即开与关,记为0和1,则所有灯的状态总数为2^n(n=3时,有000,001,010,100……)
对每个状态单独分析,可以把每个开关看作一条有向边,这样把不同的状态连起来(也可能出现自环),因此,此题就变成了最短路问题,可以广搜解决。
接下来要考虑的是如何将按钮变成边,即如何确定经过按钮的操作,当前状态将转变成哪个状态。
回想二进制操作(与、或、非、抑或),经过尝试,我们发现“与”操作可以帮助我们解决关灯问题。比如:当原状态为100时(1表示开灯,0关),按钮1可以让1和3号灯关上,我们就可以令按钮1等于010.
100&010=000
“或”操作可以解决开灯问题,如:原状态为110,按钮2可以让1和3打开
110|101=111
当按钮3可以让1和3关上,让2打开时,就可以与010,或010,顺序不会影响结果。
【代码实现】
将二进制直接放到数组里?这是不现实的,所以还是用十进制来实现。
如何提取其中的一位呢?
a & (1<<j)
表示提取a的第j位,若结果是0,说明为0,若结果不为0,说明是1。
标程
#include<bits/stdc++.h>//2622
using namespace std;
int n , m , state[1200];//n<=10,所以前1023是有用的 表示到达i状态需要走的步数
int trans[1200][105]; //trans[i][j]表示对状态i按下按钮j的状态
int q[1200000],now;//q代表即将处理的队列
int temp,open[110],close[110];
int main()
{
int l=1,r=1;
scanf("%d%d", &n ,&m);
for( int i = 1 ; i <= m ; i++) close[i] = (1<<n)-1;//open[i]=0;
q[1] = (1<<n)-1;//初始状态:所有灯都开着,每一位都是1
for(int i = 0 ; i <= (1<<n) ; i++) state[i]=-1;//所有状态初始化-1,表示之前没有遍历到这个状态
state[(1<<n)-1]=0;// 当前位置不需要移动就可以到达
for(int i = 1; i <= m ; i++)//m个按钮
for(int j =1 ; j <= n ; j++){//每个按钮对灯j的控制情况
scanf("%d", &temp);
if( temp == 1 ) close[i] -= (1<<(j-1));//按钮i可以让灯j关上
if( temp == -1 ) open[i] += (1<<(j-1));//打开
}
for( int i = 0 ; i < (1<<n); i++ )//枚举从000到111的所有状态
for( int j =1 ; j<= m ; j++)//枚举每一个按钮
trans[i][j] = ( i & close[j] ) | open[j];//经过按钮j,i会变成trans[i][j]
while( l <= r ){//当队列中还有任务时
if(state[0]!=-1) break;
now=q[l];
l++;
for(int i = 1 ; i <= m ; i++){//对于每一个按钮
if( state[trans[now][i]] == -1 ){//如果没有到过这个状态
state[trans[now][i]] = state[now]+1;//这个状态可以由now状态走一步得到
q[++r] = trans[now][i];//准备处理这个状态
}
}
}
cout<<state[0]<<endl;//到0状态需要走的步数
return 0;
}