Binary Operations
Time Limit: 2000 ms Memory Limit: 65535 kB Solved: 56 Tried: 674
Description
Bob has a sequence of N integers. They are so attractive, that Alice begs to have a continued part of it(a continued part here also means a continued subsequence). However, Bob only allows Alice to chose it randomly. Can you give the expectation of the result of the bitwise AND, OR, XOR of all the chosen numbers?
Input
First line of the input is a single integer T(1 <= T <= 50), indicating there are T test cases.
The first line of each test case contains a single number N(1 <= N <= 50000).
The second line contains N integers, indicating the sequence.
All the N integers are fit in [0, 10^9].
Output
For each test case, print "Case #t: a b c" , in which t is the number of the test case starting from 1, a is the expectation of the bitwise AND, b is the expectation of OR and c is the expectation of XOR.
Round the answer to the sixth digit after the decimal point.
Sample Input
3
2
1 2
3
1 2 3
3
2 3 4
Sample Output
Case #1: 1.000000 2.000000 2.000000
Case #2: 1.333333 2.500000 1.666667
Case #3: 1.833333 4.333333 3.666667
Hint
AND is a binary operation, performed on two numbers in binary notation. First, the shorter number is prepended with leading zeroes until both numbers have the same number of digits (in binary). Then, the result is calculated as follows: for each bit where the numbers are both 1 the result has 1 in its binary representation. It has 0 in all other positions.
OR is a binary operation, performed on two numbers in binary notation. First, the shorter number is prepended with leading zeroes until both numbers have the same number of digits (in binary). Then, the result is calculated as follows: for each bit where the numbers are both 0 the result has 0 in its binary representation. It has 1 in all other positions.
XOR is a binary operation, performed on two numbers in binary notation. First, the shorter number is prepended with leading zeroes until both numbers have the same number of digits (in binary). Then, the result is calculated as follows: for each bit where the numbers differ the result has 1 in its binary representation. It has 0 in all other positions.
Source
Sichuan State Programming Contest 2012
1 /* 2 3 4 求期望,如果暴力,超时。上次比赛没有人做出来,看了解题思路,省赛完了再来写的
5 6 用位运算,每次处理32次。 7 如果暴力,虽然前面比较少,但是,随着n的增大,次数将增加很大。 8 9 在//!!!处,原来不知道怎么处理,后来推导过程得出的。 10 11 */ 12 13 14 #include<iostream> 15 #include<cstdio> 16 #include<cstdlib> 17 #include<cstring> 18 using namespace std; 19 typedef long long LL; 20 21 LL a[50002];//看开始用int,错误了。 22 LL f[33]; 23 LL tmp[33]; 24 LL vis[33]; 25 26 void make_init(LL x) 27 { 28 LL i; 29 memset(f,0,sizeof(f)); 30 i=32; 31 while(x) 32 { 33 f[i]=x&1; 34 x=x>>1; 35 i--; 36 } 37 } 38 39 void solve(LL t,LL n) 40 { 41 LL i,j; 42 LL Sum=n*(n+1)/2; 43 LL XOR=0,AND=0,OR=0; 44 printf("Case #%lld: ",t); 45 46 memset(tmp,0,sizeof(tmp)); 47 memset(vis,0,sizeof(vis)); 48 for(i=1; i<=n; i++) 49 { 50 make_init(a[i]); 51 52 if(i==1) 53 { 54 for(j=1; j<=32; j++) 55 { 56 tmp[j]=f[j]; 57 vis[j]=f[j]; 58 } 59 } 60 else 61 { 62 for(j=1; j<=32; j++) 63 { 64 if(f[j]==0)tmp[j]=0; 65 tmp[j]+=f[j]; 66 } 67 for(j=1; j<=32; j++) 68 vis[j]=vis[j]+tmp[j]; 69 } 70 } 71 for(i=1; i<=32; i++) 72 AND=AND*2+vis[i]; 73 printf("%.6lf",(double)(AND*1.0/Sum)); 74 75 76 memset(tmp,0,sizeof(tmp)); 77 memset(vis,0,sizeof(vis)); 78 for(i=1; i<=n; i++) 79 { 80 make_init(a[i]); 81 if(i==1) 82 { 83 for(j=1; j<=32; j++) 84 { 85 tmp[j]=f[j]; 86 vis[j]=f[j]; 87 } 88 } 89 else 90 { 91 for(j=1; j<=32; j++) 92 { 93 if(f[j]==1) tmp[j]=i-1;//!!!!! 94 tmp[j]=tmp[j]+f[j]; 95 } 96 for(j=1; j<=32; j++) 97 vis[j]=vis[j]+tmp[j]; 98 } 99 } 100 for(j=1; j<=32; j++) 101 OR=OR*2+vis[j]; 102 printf(" %.6lf",(double)(OR*1.0/Sum)); 103 104 memset(tmp,0,sizeof(tmp)); 105 memset(vis,0,sizeof(vis)); 106 for(i=1; i<=n; i++) 107 { 108 make_init(a[i]); 109 if(i==1) 110 { 111 for(j=1; j<=32; j++) 112 { 113 tmp[j]=f[j]; 114 vis[j]=f[j]; 115 } 116 } 117 else 118 { 119 for(j=1; j<=32; j++) 120 { 121 if(f[j]==1) tmp[j]=i-1-tmp[j];//!!!!! 122 tmp[j]=tmp[j]+f[j]; 123 } 124 for(j=1; j<=32; j++) 125 vis[j]=vis[j]+tmp[j]; 126 } 127 } 128 for(j=1; j<=32; j++) 129 XOR=XOR*2+vis[j]; 130 printf(" %.6lf\n",(double)(XOR*1.0/Sum)); 131 132 } 133 134 int main() 135 { 136 LL T,n,i,j; 137 scanf("%lld",&T); 138 for(j=1; j<=T; j++) 139 { 140 scanf("%lld",&n); 141 for(i=1; i<=n; i++) 142 { 143 scanf("%lld",&a[i]); 144 } 145 solve(j,n); 146 } 147 return 0; 148 }