东芝重组另需1万亿日元 已向交易银行申请贷款

东芝在美国的核电业务遭受重大损失,面临1万亿日元的资金缺口。为解决这一问题,东芝正寻求主要交易银行的短期资金支持,并计划通过出售新成立的半导体公司股份来筹集资金。

北京时间5日据日本共同网报道,在美国的核电业务发生巨额亏损的东芝公司估算重组资金另外需要1万亿日元(约合621亿元人民币)以上。由于在半导体业务剥离成立新公司的股票出售前资金不足,公司已向主要交易银行申请过渡的短期资金贷款。因破产的美国核电公司西屋电气(WH)的处理需要巨额费用,贷款将用于填补资金不足。

bf857c32413495b.png

东芝截至去年年底从银团贷款约1.07万亿日元,公司拟设定担保以便从主要交易银行获得追加支援。将利用半导体业务剥离后于1日成立的新公司“东芝存储器”的股票,预计2017年度内出售,所获资金用于偿还贷款。

东芝4日在东京的总部召集交易银行介绍了现状,面向交易银行的会议是去年12月美国核电曝光巨额亏损后的第4次。会上东芝还谋求主要交易银行以外的地方银行理解,回复期限为本月14日。对于地方银行,将提供半导体以外子公司股份及不动产等担保。

交易银行方面为了防止东芝主体经营进一步恶化,也希望WH尽快申请适用《破产法》。东芝说明称,通过WH宣布破产,核电业务的风险可以控制,谋求银行团的理解。



   


 


  

本文转自d1net(转载)

【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)内容概要:本文介绍了一种基于神经网络的数据驱动迭代学习控制(ILC)算法,用于解决具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车路径跟踪问题,并提供了完整的Matlab代码实现。该方法无精确系统模型,通过数据驱动方式结合神经网络逼近系统动态,利用迭代学习机制不断提升控制性能,从而实现高精度的路径跟踪控制。文档还列举了大量相关科研方向和技术应用案例,涵盖智能优化算法、机器学习、路径规划、电力系统等多个领域,展示了该技术在科研仿真中的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及从事无人车控制、智能算法开发的工程技术人员。; 使用场景及目标:①应用于无人车在重复任务下的高精度路径跟踪控制;②为缺乏精确数学模型的非线性系统提供有效的控制策略设计思路;③作为科研复现与算法验证的学习资源,推动数据驱动控制方法的研究与应用。; 阅读建议:建议读者结合Matlab代码深入理解算法实现细节,重点关注神经网络与ILC的结合机制,并尝试在不同仿真环境中进行参数调优与性能对比,以掌握数据驱动控制的核心思想与工程应用技巧。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值