该类模板实现了一个二叉树的模板类,採用二叉链表实现。
定义二叉树节点类,採用二叉链表实现。
/
#include <iostream>
#include <cstdlib>
#include <stack>
#include <deque>
using namespace std;
template<class T>
struct BinTreeNode //二叉树节点类的定义。使用二叉链表
{
T data;
BinTreeNode<T> *leftChild, *rightChild;
BinTreeNode():leftChild(NULL),rightChild(NULL){}
BinTreeNode(T x,BinTreeNode<T> *l=NULL,BinTreeNode<T> *r=NULL):data(x),leftChild(l),rightChild(r){}
};
二叉树的模板类实现例如以下:可进行对应的功能扩展。
接口部分:
template<class T>
class BinaryTree//二叉树的模板类
{
public:
BinaryTree():root(NULL){}
BinaryTree(char x):root(NULL),RefValue(x){}
BinaryTree(const BinaryTree<T>& rhs){root=copy(rhs.root);}//copy构造函数
BinaryTree<T>& operator=(const BinaryTree<T>& rhs);//copy 赋值运算符;析构+copy构造函数
~BinaryTree(){destroy(root);}//析构函数
bool isEmpty()const{return root!=NULL?
false:true;} BinTreeNode<T>* leftChild(BinTreeNode<T>* current)const{return current!=NULL?current->leftChild:NULL;} BinTreeNode<T>* rightChild(BinTreeNode<T>* current)const{return current!=NULL?
current->rightChild:NULL;} BinTreeNode<T>* parent(BinTreeNode<T>* current)const{return (root==NULL || current==root)?NULL:parent(root,current);}//寻找其父节点 BinTreeNode<T>* getRoot()const{return root;} void inOrder(void (*visit)(BinTreeNode<T> *p)){inOrder(root,visit);}//中序递归遍历 void preOrder(void (*visit)(BinTreeNode<T> *p)){preOrder(root,visit);}//前序递归 void postOrder(void (*visit)(BinTreeNode<T> *p)){postOrder(root,visit);}//后序递归 void levelOrder(void (*visit)(BinTreeNode<T> *p));//使用队列的层次遍历 int size()const {return size(root);}//使用后序递归遍历求节点个数 int height()const {return height(root);}//使用后序递归遍历求二叉树的高度 protected: BinTreeNode<T> *root; char RefValue;//数据输入停止标志 void destroy(BinTreeNode<T>* subTree);//递归删除二叉树节点。后序遍历删除 BinTreeNode<T>* copy(const BinTreeNode<T> *orignode);//copy构造;前序 BinTreeNode<T>* parent(BinTreeNode<T>* subTree,BinTreeNode<T>* current)const;//返回父节点 void traverse(BinTreeNode<T>* subTree,ostream& out)const;//按前序方式遍历输出每一个节点的值 void createBinTree(istream& in,BinTreeNode<T>* & subTree);//採用广义表表示的二叉树创建方法 void inOrder(BinTreeNode<T> *subTree,void (*visit)(BinTreeNode<T> *p));//中序遍历 void preOrder(BinTreeNode<T> *subTree,void (*visit)(BinTreeNode<T> *p));//前序遍历 void postOrder(BinTreeNode<T> *subTree,void (*visit)(BinTreeNode<T> *p));//后序遍历 int size(BinTreeNode<T> *subTree)const;//使用后序递归遍历求节点个数 int height(BinTreeNode<T> *subTree)const;//使用后序递归遍历求二叉树的高度 friend ostream& operator<< <T>(ostream& out,const BinaryTree<T>& rhs);//add <T> 前序输出二叉树 friend istream& operator>> <T>(istream& in, BinaryTree<T>& rhs); //add <T> 採用广义表表示方式创建二叉树 };
对应成员函数的详细实现:
template<class T>
void BinaryTree<T>::destroy(BinTreeNode<T>* subTree)
{
if(subTree!=NULL){
destroy(subTree->leftChild);
destroy(subTree->rightChild);
delete subTree;
}
}
template<class T>
BinTreeNode<T>* BinaryTree<T>::parent(BinTreeNode<T>* subTree,BinTreeNode<T>* current)const
{
if(subTree==NULL) return NULL;
if(subTree->leftChild==current || subTree->rightChild==current) return subTree;
BinTreeNode<T>* p;
if((p=parent(subTree->leftChild,current))!=NULL)
return p
else
return parent(subTree->rightChild,current);
}
template<class T>
void BinaryTree<T>::traverse(BinTreeNode<T>* subTree,ostream& out)const
{
if(subTree!=NULL){
out<<subTree->data<<" ";
traverse(subTree->leftChild,cout);
traverse(subTree->rightChild,out);
}
}
template<class T>
void BinaryTree<T>::createBinTree(istream& in,BinTreeNode<T>* & subTree)
{
stack<BinTreeNode<T>* > s;
subTree=NULL;
BinTreeNode<T> *p,*t;
unsigned int k;
T ch;
in>>ch;//尽管是模板类,可是眼下仅仅支持字符型,不然会报错
while(ch!=RefValue){
switch(ch){
case '(': s.push(p);k=1;break;
case ')': s.pop();break;
case ',': k=2;break;
default:
p=new BinTreeNode<T>(ch);
if(subTree==NULL)
subTree=p;
else if(k==1)
{t=s.top();t->leftChild=p;}
else
{t=s.top();t->rightChild=p;}
}
in>>ch;
}
}
template<class T>
ostream& operator<<(ostream& out,const BinaryTree<T>& rhs)
{
rhs.traverse(rhs.root,out);
out<<endl;
return out;
}
template<class T>
istream& operator>>(istream& in, BinaryTree<T>& rhs)
{
rhs.createBinTree(in,rhs.root);
return in;
}
template<class T>
void BinaryTree<T>::inOrder(BinTreeNode<T> *subTree,void (*visit)(BinTreeNode<T> *p))
{
if(subTree!=NULL){
inOrder(subTree->leftChild,visit);
visit(subTree);
inOrder(subTree->rightChild,visit);
}
}
template<class T>
void BinaryTree<T>::preOrder(BinTreeNode<T> *subTree,void (*visit)(BinTreeNode<T> *p))
{
if(subTree!=NULL){
visit(subTree);
inOrder(subTree->leftChild,visit);
inOrder(subTree->rightChild,visit);
}
}
template<class T>
void BinaryTree<T>::postOrder(BinTreeNode<T> *subTree,void (*visit)(BinTreeNode<T> *p))
{
if(subTree!=NULL){
inOrder(subTree->leftChild,visit);
inOrder(subTree->rightChild,visit);
visit(subTree);
}
}
template<class T>
int BinaryTree<T>::size(BinTreeNode<T> *subTree)const
{
if(subTree==NULL) return 0;
else
return 1+size(subTree->leftChild)+size(subTree->rightChild);
}
template<class T>
int BinaryTree<T>::height(BinTreeNode<T> *subTree)const
{
if(subTree==NULL) return 0;
else{
int i=height(subTree->leftChild);
int j=height(subTree->rightChild);
return (i>j)?
i+1:j+1; } } template<class T> BinTreeNode<T>* BinaryTree<T>::copy(const BinTreeNode<T> *orignode) { if(orignode==NULL) return NULL; BinTreeNode<T> *temp=new BinTreeNode<T>; temp->data=orignode->data; temp->leftChild=copy(orignode->leftChild); temp->rightChild=copy(orignode->rightChild); return temp; } template<class T> BinaryTree<T>& BinaryTree<T>::operator=(const BinaryTree<T>& rhs) { this->destroy(this->root); this->root=copy(rhs.root); return *this; } template<class T> void BinaryTree<T>::levelOrder(void (*visit)(BinTreeNode<T> *p)) { deque<BinTreeNode<T>* > dq; BinTreeNode<T> *p=root; dq.push_back(p); while(!dq.empty()){ p=dq.front(); visit(p); dq.pop_front(); if(p->leftChild!=NULL) dq.push_back(p->leftChild); if(p->rightChild!=NULL) dq.push_back(p->rightChild); } }
測试函数:
int main(int argc, char* argv[])
{
BinaryTree<char> b('#');
cin>>b;
cout<<b<<endl;
//b.levelOrder(NULL);
//BinaryTree<char> a('#');
//cin>>a;
//cout<<a<<endl;
// b=a;
//cout<<b<<endl;
//BinaryTree<char> a=b;
//cout<<a<<endl;
//cout<<b.size()<<endl;
//cout<<b.isEmpty()<<endl;
//cout<<b.height()<<endl;
system("pause");
return 0;
}
測试结果:
a(b(c,d),e(f,g))#
a b c d e f g
请按随意键继续. . .