增加正则项Regularization to Prevent Overfitting

1,

model_l1 = tf.estimator.LinearClassifier(
feature_columns=base_columns + crossed_columns,
optimizer=tf.train.FtrlOptimizer(
learning_rate=0.1,
l1_regularization_strength=10.0,
l2_regularization_strength=0.0))

model_l1.train(train_inpf)

results = model_l1.evaluate(test_inpf)
clear_output()
for key in sorted(results):
print('%s: %0.2f' % (key, results[key]))

 

2,

model_l2 = tf.estimator.LinearClassifier(
feature_columns=base_columns + crossed_columns,
optimizer=tf.train.FtrlOptimizer(
learning_rate=0.1,
l1_regularization_strength=0.0,
l2_regularization_strength=10.0))

model_l2.train(train_inpf)

results = model_l2.evaluate(test_inpf)
clear_output()
for key in sorted(results):
print('%s: %0.2f' % (key, results[key]))

转载于:https://www.cnblogs.com/augustone/p/10506117.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值