1,
model_l1 = tf.estimator.LinearClassifier(
feature_columns=base_columns + crossed_columns,
optimizer=tf.train.FtrlOptimizer(
learning_rate=0.1,
l1_regularization_strength=10.0,
l2_regularization_strength=0.0))
model_l1.train(train_inpf)
results = model_l1.evaluate(test_inpf)
clear_output()
for key in sorted(results):
print('%s: %0.2f' % (key, results[key]))
2,
model_l2 = tf.estimator.LinearClassifier(
feature_columns=base_columns + crossed_columns,
optimizer=tf.train.FtrlOptimizer(
learning_rate=0.1,
l1_regularization_strength=0.0,
l2_regularization_strength=10.0))
model_l2.train(train_inpf)
results = model_l2.evaluate(test_inpf)
clear_output()
for key in sorted(results):
print('%s: %0.2f' % (key, results[key]))