python 爬虫之爬取大街网(思路)

由于需要,本人需要对大街网招聘信息进行分析,故写了个爬虫进行爬取。这里我将记录一下,本人爬取大街网的思路。

附:爬取得数据仅供自己分析所用,并未用作其它用途。  

附:本篇适合有一定 爬虫基础 crawler 观看,有什么没搞明白的,欢迎大家留言,或者私信博主。

 

首先,打开目标网址 www.dajie.com ,在职位搜索中 输入所需职业或关键信息 (我这演示的是 程序员),然后可得到新的链接地址 https://so.dajie.com/job/search?keyword=%E7%A8%8B%E5%BA%8F%E5%91%98&from=job

我们可以看到 ,数据的排序方式有2种,一种是 默认 ,一种是 时间 ,当你点击的时候你可以看到 数据的排序方式发生了变化,但是网页链接却没有变化,而且点击 下一页 的时候页面的链接也没有发生变化,其原因是 当你对其操作时,它通过

JS获取ajax数据进行变换填充,所以如果你要获取所需数据,你只能通过获取其ajax数据。(当然还有模拟JS渲染,得到页面,我没有尝试过,这里也不做多述)

 

那么如何获取到其数据呢?

当你单击 下一页 等操作时,通过抓包(XHR中)可以查看到ajax数据的来源,查看的时候可以看到其返回的是200(所需的数据),但当你在新的页面打开时,却发现返回的是299,不是你想要的结果。如一下这个链接就是对其进行时间排序所得

的ajax(https://so.dajie.com/job/ajax/search/filter?keyword=%E7%A8%8B%E5%BA%8F%E5%91%98&order=1&city=&recruitType=&salary=&experience=&page=1&positionFunction=&_CSRFToken=&ajax=1)

但是如果你是单独打开它的时候,它返回的是一个错误的页面,这应该是 大街网 反爬虫的一种手段。  

 

找到了返回的ajax地址链接,我们该如何正确的打开这个链接呢?

当我们打开这个 链接时(https://so.dajie.com/job/search?keyword=%E7%A8%8B%E5%BA%8F%E5%91%98&from=job)会发现服务器端回返回一个 Cookie

因此 当你访问 (https://so.dajie.com/job/ajax/search/filter?keyword=%E7%A8%8B%E5%BA%8F%E5%91%98&order=1&city=&recruitType=&salary=&experience=&page=1&positionFunction=&_CSRFToken=&ajax=1)

链接时,你必须要传入服务器返回的cookie 才能够获取到正确的结果。

 

下面附上本人写的代码,仅供参考。

其中需要注意的是:这些代码仅提供一个思路,里面的很多变量、类都是我项目里面的。

这里统一做一下解释

#from myproject.dajie import Jobs, IpAgentPool   指引入 Ip 池,Jobs所需要爬取得 关键字集合.(下面演示时用不到的)
#from myproject import agentPool          引入 Agent池, 用作伪装浏览器使用

 1 from myproject.dajie import Jobs, IpAgentPool
 2 from myproject import agentPool
 3 import http.cookiejar
 4 import urllib.request
 5 import urllib.parse
 6 import random
 7 import re
 8 #import pymssql
 9 
10 class dj():
11 
12     def __init__(self):
13         # -----BASEURL  为目标网站的URL
14         # -----ToSearchJob  为需要搜寻的工作
15         # -----Agent  为Agent池,用于伪装浏览器
16         # -----opener 为自己建造的一个opener,配合cookiejar可用于存储cookies
17         def Myopener(self):
18                 cookie = http.cookiejar.CookieJar()
19                 return urllib.request.build_opener(urllib.request.HTTPCookieProcessor(cookie))
20 
21         self.BASEURL = "https://www.dajie.com/"
22         # self.ToSearchJob=Jobs.TheJobNeedToSearch
23         self.AgentPool = agentPool.userAgent
24         self.IpPool = IpAgentPool.ipPool
25 
26         self.opener = Myopener(self=self)
27 
28         pass
29 
30     def getContext(self):
31         url="https://so.dajie.com/job/search?keyword=%E7%A8%8B%E5%BA%8F%E5%91%98&from=job"
32 
33         header=\
34             {
35                 "User-Agent":agentPool.userAgent[int(random.random()*4)],
36                 "Referer":"https://so.dajie.com/job/search?keyword=%E7%A8%8B%E5%BA%8F%E5%91%98&from=job"
37             }
38 
39         head=[]
40 
41         for key,value in header.items():
42             head.append((key,value))
43 
44         self.opener.addheaders=head
45 
46         #session_cookie用于保存服务器返回的cookie,并将其保存
47         #
48         #其实只需要保存  session_cookie["SO_COOKIE_V2"]  即可,其余的是多余的。服务器在进行验证的时候,只会验证 SO_COOKIE_V2
49         #
50         session_cookie={}
51         session=self.opener.open("https://so.dajie.com/job/search?keyword=%E7%A8%8B%E5%BA%8F%E5%91%98&from=job")
52         print((session.info()))
53 
54         session_cookie["DJ_RF"]= re.findall(r"DJ_RF=.+?;",str(session.info()))[0].split("=")[1]
55         session_cookie["DJ_EU"]=re.findall(r"DJ_EU=.+?;",str(session.info()))[0].split("=")[1]
56         session_cookie["DJ_UVID"] = re.findall(r"DJ_UVID=.+?;", str(session.info()))[0].split("=")[1]
57         session_cookie["SO_COOKIE_V2"] = re.findall(r"SO_COOKIE_V2=.+?;", str(session.info()))[0].split("=")[1]
58 
59         #data 包含的是所需要传入的 cookie
60         data=\
61             {
62                 "DJ_RF":session_cookie["DJ_RF"].strip(";"),
63                 "DJ_EU":session_cookie["DJ_EU"].strip(";"),
64                 "DJ_UVID":session_cookie["DJ_UVID"].strip(";"),
65                 "SO_COOKIE_V2":session_cookie["SO_COOKIE_V2"].strip(";"),
66                 "__login_tips":1,
67             }
68         #将 数据解析为传入数据的格式
69         _data=urllib.parse.urlencode(data,"utf-8")
70         print("______________")
71         print(_data)
72         #
73         #_url 指的是ajax的链接地址
74         _url="https://so.dajie.com/job/ajax/search/filter?keyword=%E7%A8%8B%E5%BA%8F%E5%91%98&order=1&city=&recruitType=&salary=&experience=&page=1&positionFunction=&_CSRFToken=&ajax=1"
75         req=self.opener.open(_url,data=_data.encode("utf-8"))
76 
77         print("-----------------")
78         print(req.read().decode("utf-8"))
79 
80         #print(req.read().decode("utf-8"))
81 
82 
83 
84 if __name__=="__main__":
85     _dj=dj()
86     _dj.getContext()
View Code

最后附上运行结果的截图

                     

 

转载于:https://www.cnblogs.com/one-lightyear/p/6833545.html

【为什么学爬虫?】        1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别、验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到!        2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件和站 【课程设计】 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是:络请求:模拟浏览器的行为从上抓取数据。数据解析:将请求下来的数据进行过滤,提取我们想要的数据。数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是:爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态爬虫、字体反爬识别等。Scrapy和分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。通过爬虫进阶的知识点我们能应付大量的反爬站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率和速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。 从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求!【课程服务】 专属付费社群+定期答疑
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值