【python】-- GIL锁、线程锁(互斥锁)、递归锁(RLock)

GIL锁

计算机有4核,代表着同一时间,可以干4个任务。如果单核cpu的话,我启动10个线程,我看上去也是并发的,因为是执行了上下文的切换,让看上去是并发的。但是单核永远肯定时串行的,它肯定是串行的,cpu真正执行的时候,因为一会执行1,一会执行2.。。。。正常的线程就是这个样子的。但是,在python中,无论有多少核,永远都是假象。无论是4核,8核,还是16核.......不好意思,同一时间执行的线程只有一个(线程),它就是这个样子的。这个是python的一个开发时候,设计的一个缺陷,所以说python中的线程是假线程。

1、全局解释器锁(GIL)

 无论你启多少个线程,你有多少个cpu, Python在执行的时候会淡定的在同一时刻只允许一个线程运行

2、GIL存在的意义?

 因为python的线程是调用操作系统的原生线程,这个原生线程就是C语言写的原生线程。因为python是用C写的,启动的时候就是调用的C语言的接口。因为启动的C语言的远程线程,那它要调这个线程去执行任务就必须知道上下文,所以python要去调C语言的接口的线程,必须要把这个上限问关系传给python,那就变成了一个我在加减的时候要让程序串行才能一次计算。就是先让线程1,再让线程2.......

 每个线程在执行的过程中,python解释器是控制不了的,因为是调的C语言的接口,超出了python的控制范围,python的控制范围是只在python解释器这一层,所以python控制不了C接口,它只能等结果。所以它不能控制让哪个线程先执行,因为是一块调用的,只要一执行,就是等结果,这个时候4个线程独自执行,所以结果就不一定正确了。有了GIL,就可以在同一时间只有一个线程能够工作。虽然这4个线程都启动了,但是同一时间我只能让一个线程拿到这个数据。其他的几个都干等。python启动的4个线程确确实实落到了这4个cpu上,但是为了避免出错。这也是Cpython的一个缺陷,其他语言没有,仅仅只是Cpython有。

3、GIL锁关系图

GIL(全局解释器锁)是加在python解释器里面的,效果如图:

如上图,为什么GIL锁要加在python解释器这一层,而却不加在其他地方?

因为你python调用的所有线程都是原生线程。原生线程是通过C语言提供原生接口,相当于C语言的一个函数。你一调它,你就控制不了了它了,就必须等它给你返回结果。只要已通过python虚拟机,再往下就不受python控制了,就是C语言自己控制了。你加在python虚拟机以下,你是加不上去的。同一时间,只有一个线程穿过这个锁去真正执行。其他的线程,只能在python虚拟机这边等待。

 总结:

需要明确的一点是GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念。就好比C++是一套语言(语法)标准,但是可以用不同的编译器来编译成可执行代码。有名的编译器例如GCC,INTEL C++,Visual C++等。Python也一样,同样一段代码可以通过CPython,PyPy,Psyco等不同的Python执行环境来执行。像其中的JPython就没有GIL。然而因为CPython是大部分环境下默认的Python执行环境。所以在很多人的概念里CPython就是Python,也就想当然的把GIL归结为Python语言的缺陷。所以这里要先明确一点:GIL并不是Python的特性,Python完全可以不依赖于GIL。

 

 

 

线程锁(互斥锁)

 线程需要沟通,需要共享数据,但是我们之前并没有涉及到多线程情况共享数据的例子。下面就来看看,多线程共享数据会出现什么情况

 1、多进程共享数据(python2.7中实验)

import threading
import time


def run(n):
    global num   # 把num变成全局变量
    time.sleep(1)  # 注意了sleep的时候是不占有cpu的,这个时候cpu直接把这个线程挂起了,此时cpu去干别的事情去了
    num += 1   # 所有的线程都做+1操作

num = 0   # 初始化num为0
t_obj = list()
for i in range(100):
    t = threading.Thread(target=run, args=("t-{0}".format(i),))
    t.start()
    t_obj.append(t)

for t in t_obj:
    t.join()


print("--------all thread has finished")
print("num:", num)   # 输出最后的num值

#执行结果
--------all thead has finished
('num:', 97)  #输出的结果

最后输出的结果怎么会是 97 呢?应该是100才对啊,不是有GIL(全局解释器锁)已经控制了,为什么最后的输出结果还是错误?

其实这种情况只能在python2.x 中才会出现的,python3.x里面没有这种现象,下面我们就用一张图来解释一下这个原因。如图:

解释:

  1. 到第5步的时候,可能这个时候python正好切换了一次GIL(据说python2.7中,每100条指令会切换一次GIL),执行的时间到了,被要求释放GIL,这个时候thead 1的count=0并没有得到执行,而是挂起状态,count=0这个上下文关系被存到寄存器中.
  2. 然后到第6步,这个时候thead 2开始执行,然后就变成了count = 1,返回给count,这个时候count=1.
  3. 然后再回到thead 1,这个时候由于上下文关系,thead 1拿到的寄存器中的count = 0,经过计算,得到count = 1,经过第13步的操作就覆盖了原来的count = 1的值,所以这个时候count依然是count = 1,所以这个数据并没有保护起来。

 

2、添加线程锁

 通过上面的图我们知道,结果依然是不准确的。所以我还要加一把锁,这个是用户级别的锁。

 

import threading
import time


def run(n):
    lock.acquire()  # 添加线程锁
    global num   # 把num变成全局变量
    time.sleep(0.1)  # 注意了sleep的时候是不占有cpu的,这个时候cpu直接把这个线程挂起了,此时cpu去干别的事情去了
    num += 1   # 所有的线程都做+1操作
    lock.release()  # 释放线程锁


num = 0   # 初始化num为0
lock = threading.Lock()  # 生成线程锁实例
t_obj = list()
for i in range(10):
    t = threading.Thread(target=run, args=("t-{0}".format(i),))
    t.start()
    t_obj.append(t)

for t in t_obj:
    t.join()   # 为join是等子线程执行的结果,如果不加,主线程执行完,下面就获取不到子线程num的值了,共享数据num值就错误了


print("--------all thread has finished")
print("num:", num)   # 输出最后的num值

 小结:

  1. 用theading.Lock()创建一个lock的实例。
  2. 在线程启动之前通过lock.acquire()加加锁,在线程结束之后通过lock.release()释放锁。
  3. 这层锁是用户开的锁,就是我们用户程序的锁。跟我们这个GIL没有关系,但是它把这个数据相当于copy了两份,所以在这里加锁,以确保同一时间只有一个线程,真真正正的修改这个数据,所以这里的锁跟GIL没有关系,你理解就是自己的锁。
  4. 加锁,说明此时我来去修改这个数据,其他人都不能动。然后修改完了,要把这把锁释放。这样的话就把程序编程串行了。

 

3、使用场景

 在用户层面加锁,使程序变成串行了,那我们在什么情况下用呢?

  1、我们在程序中间不能有sleep,因为程序变成串行,这样你再sleep,程序执行的时间就会变长。

  2、我们使用的时候确保数据量不是特别大,如果数据量大,也会影响我们的执行效率。

  3、如果你程序结束时,不释放锁的话,而且程序又是串行的,则就是占着坑,那永远在那边等着,所以最后需要释放锁。

 

 

 

递归锁(RLock)

1、线程死锁

在线程间共享多个资源的时候,如果两个线程分别占有一部分资源并且同时等待对方的资源,就会造成死锁,因为系统判断这部分资源都

正在使用,所有这两个线程在无外力作用下将一直等待下去

import threading


def run1():
    print("grab the first part data")
    lock.acquire()  # 修改num前加锁
    global num
    num += 1
    lock.release()   # 释放锁
    return num


def run2():
    print("grab the second part data")
    lock.acquire()   # 修改num2前加锁
    global num2
    num2 += 1
    lock.release()   # 释放锁
    return num2


def run3():
    lock.acquire()  # 加锁
    res = run1()   # 执行run1函数
    print('--------between run1 and run2-----')
    res2 = run2()  # 执行run2函数
    lock.release()  # 释放锁
    print(res, res2)


if __name__ == '__main__':
    num, num2 = 0, 0
    lock = threading.Lock()  # 设置锁的全局变量
    for i in range(10):
        t = threading.Thread(target=run3)
        t.start()


while threading.active_count() != 1:  # 判断是否只剩主线程了
    print(threading.active_count())
else:
    print('----all threads done---')
    print(num, num2)

上面的执行结果,是无限的进入死循环,所以不能这么加,这个时候就需要用到递归锁。

 

2、递归锁(RLock)

import threading


def run1():
    print("grab the first part data")
    lock.acquire()  # 修改num前加锁
    global num
    num += 1
    lock.release()   # 释放锁
    return num


def run2():
    print("grab the second part data")
    lock.acquire()   # 修改num2前加锁
    global num2
    num2 += 1
    lock.release()   # 释放锁
    return num2


def run3():
    lock.acquire()  # 加锁
    res = run1()   # 执行run1函数
    print('--------between run1 and run2-----')
    res2 = run2()  # 执行run2函数
    lock.release()  # 释放锁
    print(res, res2)


if __name__ == '__main__':
    num, num2 = 0, 0
    lock = threading.RLock()  # 只用修改这里,把线程锁lock()更改成递归锁RLock()的全局变量
    for i in range(10):
        t = threading.Thread(target=run3)
        t.start()


while threading.active_count() != 1:  # 判断是否只剩主线程了
    print(threading.active_count())
else:
    print('----all threads done---')
    print(num, num2)

递归锁原理其实很简单:就是每开一把门,在字典里面存一份数据,退出的时候去到door1或者door2里面找到这个钥匙退出,如图:

lock = {
door1:key1,
door2:key2
}

 注:递归锁用于多重锁的情况,如果只是一层锁,就用不上递归锁,在实际情况下,递归锁场景用的不是特别多。

转载于:https://www.cnblogs.com/Keep-Ambition/p/7596098.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值