caioj 1076 动态规划入门(中链式3:最大的算式)

一开始写了一个复杂度很大的方法,然后还过了(千万记得开longlong )

#include<cstdio>
#include<cstring>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;

typedef long long ll;
const int MAXN = 20;
ll f[MAXN][MAXN][MAXN];
int s[MAXN], n, k;

int main()
{
	scanf("%d%d", &n, &k);
	REP(i, 1, n + 1) 
	{
		int x;
		scanf("%d", &x);
		s[i] = s[i-1] + x;
	}
	
	REP(i, 1, n + 1)
		REP(j, i, n + 1)
			f[i][j][0] = s[j] - s[i-1];
	
	ll ans = f[1][n][0];
	REP(r, 1, k + 1)
	{
		REP(d, 2, n + 1)
			for(int st = 1; st + d - 1 <= n; st++)
			{
				int i = st, j = st + d - 1;
				REP(p, i, j)
					REP(u, 0, r)
						f[i][j][r] = max(f[i][j][r], f[i][p][u] * f[p+1][j][r-u-1]);
			}
		ans = max(ans, f[1][n][r]);
	}
	printf("%lld\n", ans);
	return 0;
}

 

然后看题解发现可以简化很多

#include<cstdio>
#include<cstring>
#include<algorithm>
#define REP(i, a, b) for(int i = (a); i < (b); i++)
using namespace std;

typedef long long ll;
const int MAXN = 20;
ll f[MAXN][MAXN], s[MAXN];
int n, k;

int main()
{
	scanf("%d%d", &n, &k);
	REP(i, 1, n + 1) 
	{
		ll x;
		scanf("%lld", &x);
		s[i] = s[i-1] + x;
		f[i][0] = s[i];
	}
	
	REP(r, 1, k + 1)
		REP(i, r + 1, n + 1)
			for(int j = i; j >= r + 1; j--)
			{
				f[i][r] = max(f[i][r], f[j-1][r-1] * (s[i] - s[j - 1]));
				f[i][r] = max(f[i][r], f[j-1][r-1] + (s[i] - s[j - 1]));
			}
	printf("%lld\n", f[n][k]);
	return 0;
}

为什么前面几道题要分i到j,而这道题可以只用从1到i呢?

仔细想一想,发现这道题的“后面几堆”可以直接表示出来,不需要用到之前算的f数组, 可以一路推下去。

前两道“后面几堆”需要用到f数组,那么就需要区间这样去做

转载于:https://www.cnblogs.com/sugewud/p/9819424.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值