视频教程-大数据Flink从入门到原理到电商数据分析实战项目-大数据

本教程深入浅出地讲解Flink大数据处理框架,结合电商数据分析项目实战,涵盖Flink基础理论与核心API,适合有一定Java/Scala基础的开发人员提升流处理技能。
摘要由CSDN通过智能技术生成

扫码下载「CSDN程序员学院APP」,1000+技术好课免费看

APP订阅课程,领取优惠,最少立减5元 ↓↓↓

订阅后:请点击此处观看视频课程

 

视频教程-大数据Flink从入门到原理到电商数据分析实战项目-大数据

学习有效期:永久观看

学习时长:1584分钟

学习计划:27天

难度:

 

口碑讲师带队学习,让你的问题不过夜」

讲师姓名:张长志

CTO/CIO/技术副总裁/总工程师

讲师介绍:张长志技术全才、擅长领域:区块链、大数据、Java等。10余年软件研发及企业培训经验,曾为多家大型企业提供企业内训如中石化,中国联通,中国移动等知名企业。拥有丰富的企业应用软件开发经验、深厚的软件架构设计理论基础及实践能力。项目开发历程:基于大数据技术推荐系统 ,医疗保险大数据分析与统计推断,H5跨平台APP,携程酒店APP,Go语言实现Storm和ZK类似框架。

☛点击立即跟老师学习☚

 

「你将学到什么?」

如今的大数据技术应用场景,对实时性的要求已经越来越高。作为新一代大数据流处理框架,由于非常好的实时性,Flink独树一帜,在近些年引起了业内极大的兴趣和关注。Flink能够提供毫秒级别的延迟,同时保证了数据处理的低延迟、高吞吐和结果的正确性,还提供了丰富的时间类型和窗口计算、Exactly-once 语义支持,另外还可以进行状态管理,并提供了CEP(复杂事件处理)的支持。Flink在实时分析领域的优势,使得越来越多的公司开始将实时项目向Flink迁移,其社区也在快速发展壮大。

目前,Flink已经成为各大公司实时领域的发力重点,特别是国内以阿里为代表的一众大厂,都在全力投入,不少公司为Flink社区贡献了大量源码。如今Flink已被很多人认为是大数据实时处理的方向和未来,很多公司也都在招聘和储备了解掌握Flink的人才。

本教程将Flink理论与电商数据分析项目实战并重,对Flink基础理论知识做了系统的梳理和阐述,并通过电商用户行为分析的具体项目用多个指标进行了实战演练。为有志于增加大数据项目经验、扩展流式处理框架知识的工程师提供了学习方式。

二、教程内容和目标
本教程主要分为两部分:
第一部分,主要是Flink基础理论的讲解,涉及到各种重要概念、原理和API的用法,并且会有大量的示例代码实现;
第二部分,以电商作为业务应用场景,以Flink作为分析框架,介绍一个电商用户行为分析项目的开发实战。
通过理论和实际的紧密结合,可以使学员对Flink有充分的认识和理解,在项目实战中对Flink和流式处理应用的场景、以及电商分析业务领域有更深刻的认识;并且通过对流处理原理的学习和与批处理架构的对比,可以对大数据处理架构有更全面的了解,为日后成长为架构师打下基础。

三、谁适合学
1、有一定的 Java、Scala 基础,希望了解新的大数据方向的编程人员
2、有 Java、Scala 开发经验,了解大数据相关知识,希望增加项目经验的开发人员
3、有较好的大数据基础,希望掌握Flink及流式处理框架的求职人员

 

「课程学习目录」

1.001__Flink理论_Flink简介(一)
2.002__Flink理论_Flink简介(二)
3.003__Flink理论_Flink简介(三)应用场景
4.004__Flink理论_Flink简介(四)流处理的演变
5.005__Flink理论_Flink简介(五)Flink的特点
6.006__Flink理论_Flink快速上手(上)批处理wordcount
7.007__Flink理论_Flink快速上手(下)流处理wordcount
8.008__Flink理论_Flink部署(上)基本配置和启动集群
9.009__Flink理论_Flink部署(中)提交任务和测试
10.010__Flink理论_Flink部署(下)命令行操作及其它部署方式
11.011__Flink理论_Flink运行架构(一)运行时的组件和基本原理
12.012__Flink理论_Flink运行架构(二)Slot和并行度
13.013__Flink理论_Flink运行架构(三)数据流和执行图
14.014__Flink理论_Flink运行架构(四)任务调度控制
15.015__Flink理论_Flink DataStream API(一)环境和简单source
16.016__Flink理论_Flink DataStream API(二)Kafka Source
17.017__Flink理论_Flink DataStream API(三)自定义Source
18.018__Flink理论_Flink DataStream API(四)基本转换算子
19.019__Flink理论_Flink DataStream API(五)聚合算子
20.020__Flink理论_Flink DataStream API(六)多流转换算子
21.021__Flink理论_Flink DataStream API(七)UDF函数
22.022__Flink理论_Flink DataStream API(八)Kafka Sink
23.023__Flink理论_Flink DataStream API(九)Redis Sink
24.024__Flink理论_Flink DataStream API(十)ES Sink
25.025__Flink理论_Flink DataStream API(十一)JDBC Sink
26.026__Flink理论_Flink Window API(上)概念和类型
27.027__Flink理论_Flink Window API(下)API详解
28.028__Flink理论_Flink时间语义
29.029__Flink理论_Watermark
30.030__Flink理论_Flink窗口操作(上)简单测试
31.031__Flink理论_Flink窗口操作(中)事件时间测试
32.032__Flink理论_Flink窗口操作(下)Window起始点
33.033__Flink理论_Flink底层API(上)Process Function
34.034__Flink理论_Flink底层API(中)Process Function编程示例
35.035__Flink理论_Flink底层API(下)侧输出流
36.036__Flink理论_Flink状态管理(上)算子状态和键控状态
37.037__Flink理论_Flink状态管理(下)状态后端
38.038__Flink理论_Flink状态编程(上)
39.039__Flink理论_Flink状态编程(下)
40.040__Flink理论_Flink容错机制(上)检查点
41.041__Flink理论_Flink容错机制(中)检查点算法
42.042__Flink理论_Flink容错机制(下)检查点配置
43.043__Flink理论_Flink状态一致性(上)
44.044__Flink理论_Flink状态一致性(中)端到端状态一致性
45.045__Flink理论_Flink状态一致性(下)Flink-Kafka端到端状态一致性
46.046__Flink理论_Table API 和Flink SQL简介
47.047_电商用户行为分析_项目简介
48.048_电商用户行为分析_实时热门统计流程分析
49.049_电商用户行为分析_其它模块需求分析
50.050_电商用户行为分析_常见指标汇总
51.051_电商用户行为分析_实时热门商品统计(一)
52.052_电商用户行为分析_实时热门商品统计(二)
53.053_电商用户行为分析_实时热门商品统计(三)
54.054_电商用户行为分析_实时热门商品统计(四)Kafka测试
55.055_电商用户行为分析_热门页面统计(上)
56.056_电商用户行为分析_热门页面统计(下)
57.057_电商用户行为分析_PV统计
58.058_电商用户行为分析_UV统计
59.059_电商用户行为分析_布隆过滤器实现UV统计(上)
60.060_电商用户行为分析_布隆过滤器实现UV统计(中)
61.061_电商用户行为分析_布隆过滤器实现UV统计(下)
62.062_电商用户行为分析_APP推广渠道统计(上)
63.063_电商用户行为分析_APP推广渠道统计(下)
64.064_电商用户行为分析_带黑名单的广告点击统计(上)
65.065_电商用户行为分析_带黑名单的广告点击统计(下)
66.066_电商用户行为分析_登录失败检测(上)
67.067_电商用户行为分析_登录失败检测(下)
68.068_电商用户行为分析_CEP简介(上)
69.069_电商用户行为分析_CEP简介(下)
70.070_电商用户行为分析_登录失败检测CEP实现
71.071_电商用户行为分析_订单超时失效CEP实现(上)
72.072_电商用户行为分析_订单超时失效CEP实现(下)
73.073_电商用户行为分析_订单超时失效状态编程(上)
74.074_电商用户行为分析_订单超时失效状态编程(下)
75.075_电商用户行为分析_实时对账(上)
76.076_电商用户行为分析_实时对账(中)
77.077_电商用户行为分析_实时对账(下)
78.078_电商用户行为分析_实时对账Join实现及项目总结

 

7项超值权益,保障学习质量」

  • 大咖讲解

技术专家系统讲解传授编程思路与实战。

  • 答疑服务

专属社群随时沟通与讲师答疑,扫清学习障碍,自学编程不再难。

  • 课程资料+课件

超实用资料,覆盖核心知识,关键编程技能,方便练习巩固。(部分讲师考虑到版权问题,暂未上传附件,敬请谅解)

  • 常用开发实战

企业常见开发实战案例,带你掌握Python在工作中的不同运用场景。

  • 大牛技术大会视频

2019Python开发者大会视频免费观看,送你一个近距离感受互联网大佬的机会。

  • APP+PC随时随地学习

满足不同场景,开发编程语言系统学习需求,不受空间、地域限制。

 

「什么样的技术人适合学习?」

  • 想进入互联网技术行业,但是面对多门编程语言不知如何选择,0基础的你
  • 掌握开发、编程技术单一、冷门,迫切希望能够转型的你
  • 想进入大厂,但是编程经验不够丰富,没有竞争力,程序员找工作难。

 

「悉心打造精品好课,27天学到大牛3年项目经验」

【完善的技术体系】

技术成长循序渐进,帮助用户轻松掌握

掌握大数据知识,扎实编码能力

【清晰的课程脉络】

浓缩大牛多年经验,全方位构建出系统化的技术知识脉络,同时注重实战操作。

【仿佛在大厂实习般的课程设计】

课程内容全面提升技术能力,系统学习大厂技术方法论,可复用在日后工作中。

 

「你可以收获什么?」

1.主要是Flink基础理论的讲解,涉及到各种重要概念、原理和API的用法,并且会有大量的示例代码实现;

2.以电商作为业务应用场景,以Flink作为分析框架,介绍一个电商用户行为分析项目的开发实战。

 

上百节课视频详细讲解,需要的小伙伴自行百度网盘下载,链接见附件,永久有效。 课程亮点: 1.知识体系完备,从小白到大神各阶段读者均能学有所获。 2.生动形象,化繁为简,讲解通俗易懂。 3.结合工作实践及分析应用,培养解决实际问题的能力。 4.每一块知识点, 都有配套案例, 学习不再迷茫。 课程内容: 1.Flink框架简介 2.Flink集群搭建运维 3.Flink Dataset开发 4.Flink 广播变量,分布式缓存,累加器 5.Flink Datastream开发 6.Flink Window操作 7.Flink watermark与侧道输出 8.Flink状态计算 9.Flink容错checkpoint与一致性语义 10.Flink进阶 异步IO,背压,内存管理 11.Flink Table API与SQL 课程目录介绍 第一章 Flink简介 01.Flink的引入 02.什么是Flink 03.Flink流处理特性 04.Flink基石 05.批处理与流处理 第二章 Flink架构体系 01.Flink中重要角色 02.无界数据流与有界数据流 03.Flink数据流编程模型 04.Libraries支持 第三章 Flink集群搭建 01.环境准备工作 02.local模式 03.Standalone集群模式 04.Standalone-HA集群模式 05.Flink On Yarn模式-介绍 06.Flink On Yarn模式-准备工作 07.Flink On Yarn模式-提交方式-Session会话模式 08.Flink On Yarn模式-提交方式-Job分离模式 09. Flink运行架构-Flink程序结构 10. Flink运行架构-Flink并行数据流 11. Flink运行架构-Task和Operator chain 12. Flink运行架构-任务调度与执行 13. Flink运行架构-任务槽与槽共享 第四章 Dataset开发 01.入门案例 02.入门案例-构建工程、log4j.properties 03.入门案例-代码运行yarn模式运行 04.DataSource-基于集合 05.DataSource-基于文件 06.Transformation开发 07.Datasink-基于集合 08.Datasink-基于文件 09.执行模式-本地执行 10.执行模式-集群执行 11.广播变量 12.累加器 13.分布式缓存 14.扩展并行度的设置 第五章 DataStream开发 01.入门案例-流处理流程 02.入门案例-示例、参考代码 03.流处理常见Datasource 04.Datasource基于集合 05.Datasource基于文件 06.Datasource基于网络套接字 07.Datasource-自定义source-SourceFunction 08.Datasource-自定义source-ParallelSourceFunction 09.Datasource-自定义source-RichParallelSourceFunction 10.Datasource-自定义source-MysqlSource 11.Datasource-自定义source-KafkaSource 12.DataStream-transformations 13.DataSink-输出数据到本地文件 14.DataSink-输出数据到本地集合 15.DataSink-输出数据到HDFS 16.DataSink-输出数据到mysql,kafka,Redis 第六章 Flink中Window 01.为什么需要window 02.什么是window 03.Flink支持的窗口划分方式 04.Time-window之tumbling-time-window 05.Time-window之sliding-time-window 06.Time-window之session-window 07.Count-window之tumbling-count-window 08.Count-window之sliding-count-window 09.window-Apply函数 第七章 Eventime-watermark 01.时间分类 02.watermark之数据延迟产生 03.watermark之解决数据延迟到达 04.watermark综合案例 05.watermark之数据丢失 06.watermark+侧道输出保证数据不丢失 等等共十一章节
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值