通过outlook connector使用Outlook 2003 或 Outlook 2007 访问和管理 Windows Live Hotmail 或 Office Live Mail 帐户、联系...

     微软于3月8日发布了一个称为outlook connector的outlook插件,目前版本 v4.0。官方说明如下:
     有了 Outlook Connector 版,您就可以使用 Outlook 2003 或 Outlook 2007 免费访问和管理您的 Windows Live Hotmail 或 Office Live Mail 帐户,组织电子邮件和联系人!同时,您还可以通过付费订阅,在 Outlook 中访问和管理日历、任务和便笺。
    借助 Outlook Connector 版,您可以在 Outlook 中使用您的 Live Hotmail 帐户:

        阅读和发送您的 Office Live Mail 或 Windows Live Hotmail 电子邮件。 
        管理您的 Live Mail 联系人。 
        通过高级选项组织垃圾邮件。 
        在同一个地方管理多个电子邮件帐户。

    选择付费订阅后,还可以使用 Outlook Connector 版的以下功能: 

        在 Outlook 中管理、共享和同步您的 Windows Live 日历。 
        访问您的任务和便笺。

终于可以通过outlook管理hotmail了!爽!
截图:
增加的菜单:


添加帐号:


设置,很简单,输入用户名,密码就可以:


正常收发邮件:


hotmail联系人:


邮件阅读、删除等状态都可以同步回hotmail服务器!
是不是很过瘾 ,下载地址如下:
http://www.microsoft.com/downloads/details.aspx?displaylang=zh-cn&FamilyID=7aad7e6a-931e-438a-950c-5e9ea66322d4

转载于:https://www.cnblogs.com/jiessie327/archive/2008/03/28/1127646.html

<think>嗯,用户想了解Softmax或者Softmax激活函数。首先,我得回顾一下自己对这个概念的理解。Softmax通常用在神经网络的输出,特别是在多分类问题中。它的作用是将输入的原始分数(logits)转化为概率分布,这样每个类别的概率都在0到1之间,并且所有类别的概率之和为1。 那我要怎么组织这个回答呢?可能需要分几个步骤来讲解。首先解释Softmax的定义,然后说明它的数学表达式。接下来可以谈谈它的应用场景,比如多分类任务中的常见用法。还要提到它的特性,比如指数函数的作用是放大差异,使得概率分布更明显。另外,可能需要注意它的数稳定性问题,比如指数可能导致数溢出,这候通常会引入一些技巧,比如减去最大来处理。 用户可能想知道为什么使用Softmax而不是其他归一化方法。这候需要对比,比如和sigmoid的区别,Softmax处理的是互斥的多分类,而sigmoid可能用于多标签分类。另外,Softmax与交叉熵损失函数的关系也很重要,通常结合使用,这样可以简化梯度计算。 还要注意一些细节,比如Softmax的导数特性,这在反向传播中很关键。可能还要提到在实际框架中的实现,比如TensorFlow或PyTorch中的使用方式,以及处理数稳定性的常用方法。 有没有可能用户是刚开始学习机器学习,所以需要避免使用过于复杂的术语?可能需要用简单的例子来说明,比如有三个类别的分类问题,输入logits经过Softmax后变成概率。或者举一个具体的计算例子,让用户更直观地理解。 另外,用户可能对Softmax的缺点感兴趣,比如对极端敏感,或者计算量较大的问题。这候可以提一下替代方案,比如使用LogSoftmax结合NLLLoss来提升数稳定性。 需要确保回答的结构清晰,分点说明。可能的结构是:定义、数学公式、作用、应用场景、优缺点、实际应用中的注意事项,以及与其他激活函数的对比。这样用户能逐步了解Softmax的各个方面。 检查一下数学公式是否正确。Softmax的公式应该是对于每个元素i,输出是e的z_i次方除以所有元素e的z_j次方的和。写成LaTeX的话,独立公式要用$$...$$,行内用$...$。比如,独立公式: $$ S(z_i) = \frac{e^{z_i}}{\sum_{j=1}^{C} e^{z_j}} $$ 确保这个部分正确,并且按照用户给的系统级指令来格式化。 还要确认是否提到了梯度计算,比如Softmax的导数在反向传播中的简化形式,特别是在结合交叉熵损失的优势。这部分可能对于理解为什么Softmax被广泛使用很重要。 总结一下,回答应该包括以下几个部分: 1. Softmax的定义和作用 2. 数学表达式 3. 应用场景 4. 特性(如概率转换,指数放大差异) 5. 数稳定性处理 6. 与交叉熵损失的关系 7. 优缺点 8. 实际使用中的例子或注意事项 这样结构清晰,用户能一步步理解。同,要注意用中文,避免术语过于晦涩,适当举例说明。现在把这些点组织成连贯的内容,确保符合用户的格式要求,特别是数学表达式的正确使用。</think>### Softmax激活函数介绍 #### 1. **定义与作用** Softmax是一种常用的激活函数,通常用于神经网络的**输出**,特别是在**多分类任务**中。它的核心作用是将一组实数(称为**logits**)转化为**概率分布**,使得每个输出的范围在$[0, 1]$之间,且所有输出之和为1。 --- #### 2. **数学公式** 对于输入向量$z = [z_1, z_2, ..., z_C]$($C$为类别数),Softmax的计算公式为: $$ S(z_i) = \frac{e^{z_i}}{\sum_{j=1}^{C} e^{z_j}} $$ - **$e^{z_i}$**:对输入取指数,放大数差异。 - **分母**:所有类别指数的总和,用于归一化。 --- #### 3. **直观解释** - **指数函数的作用**:通过指数运算,将较大的输入对应到更高的概率,增强模型对“明显类别”的置信度。 - **概率化输出**:例如,输入为$z = [3, 1, -2]$,Softmax输出可能为$[0.88, 0.12, 0]$,表示模型认为第一类的概率最高。 --- #### 4. **应用场景** - **多分类任务**:如手写数字识别(10分类)、图像分类(1000类)等。 - **输出设计**:通常与**交叉熵损失(Cross-Entropy Loss)**结合使用,简化梯度计算。 --- #### 5. **特性与优势** - **概率解释性**:输出可直接视为类别概率,便于决策。 - **梯度优化**:当Softmax与交叉熵损失联合使用反向传播的梯度计算更高效。 - **数稳定性处理**:实际实现,为避免指数爆炸(如$e^{1000}$),会对输入做平移($z_i \leftarrow z_i - \max(z)$),确保数稳定。 --- #### 6. **局限性** - **对异常敏感**:若某个输入$z_i$极大,Softmax会赋予它接近1的概率,其他类别接近0(“赢者通吃”)。 - **计算开销**:指数运算在大规模分类可能较慢。 --- #### 7. **代码示例(伪代码)** ```python def softmax(z): shifted_z = z - np.max(z) # 数稳定性处理 exp_z = np.exp(shifted_z) return exp_z / np.sum(exp_z) ``` --- #### 8. **与其他函数的对比** - **Sigmoid**:适用于二分类,输出独立概率;Softmax适用于多分类,输出互斥概率。 - **LogSoftmax**:对Softmax取对数,常与负对数似然损失(NLLLoss)结合,进一步提升数稳定性。 --- #### 9. **实际应用建议** - **分类任务**:优先使用`Softmax + 交叉熵损失`组合。 - **多标签分类**:需改用多个Sigmoid输出。 - **框架实现**:在PyTorch中为`torch.nn.Softmax(dim=1)`,TensorFlow中为`tf.keras.activations.softmax`。 --- 通过Softmax神经网络能够以概率形式输出分类结果,为后续的决策(如取最大概率类别)提供直观依据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值