简单线性相关系数 r及检验

本文介绍了线性相关系数r的概念,包括总体和样本相关系数,并探讨了其在大数据不可直接观测时的计算方法。同时,文章强调了进行相关系数检验的重要性,并概述了检验的流程和目的。
  • 总体的相关系数
17003032_aAXG.png
 
Cov(X,Y):变量 X和 变量Y 的协方差,公式为
17003032_NcHx.png
Var(X):变量 X 的方差, Var(X) :
17003032_Rwja.png
Var(Y):变量 Y 的方差,Var(Y)
17003032_uxVl.png
 

17003032_ij2L.png :变量的 X 的平均值    

17003033_EAXp.png

17003033_A2a3.png:变量X 的平均值

17003033_314g.png

 


  • 样本相关系数

当总体较大时,变量 X 与 Y的全部数值一般不可能去直接观察,从总体中随机抽取一定数量的样本,通过观测值去计算 样本相关系数 r

17003033_fiKh.png

a、样本相关系数作为总体相关系数的估计值
b、涉及的两个变量 X 和 Y地位是平等的
c、相关系数仅能反映两个变量间的线性相关关系
d、相关系数的取值范围

  •  相关系数的取值
a、r 的取值范围:-1 <= r <=1
b、r > 0表现正相关, r < 0表示负相关
c、r = 0表示不存在线性相关关系(并不代表无相关,有可能有其他的相关)
d、| r | 表示完全线性相关
e、 0 < | r | < 1表示存在不同程度线性相关
    | r | < 0.3 为微弱线性相关
    0.3 <= | r | < 0.5 为低度线性相关
    0.5 <= | r | < 0.8 为显著线性相关
    0.8 <= | r | < 1 为高度线性相关


  • 相关系数的检验

  • 为什么要进行检验
 r 相关系数是通过样本数据计算的,因而带有一定的随机性


  • 检验方法

    H0 :  17003033_ZncO.png = 0  相关系数在统计上不显著
    H1:   17003033_Upsa.png ≠  0

    样本统计量:
17003033_jbkq.png
   决策:
    若 | t | >=  17003033_41dv.png ,表明 r 在统计上是显著的
    若 | t | <=  17003033_mzXE.png,表明 r 在统计 上是不显著的
17003033_Bt7k.png
 

 

 








转载于:https://my.oschina.net/u/1785519/blog/1511500

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值