什么是Kafka
Kafka是一种高吞吐量 的分布式发布订阅消息系统,有如下特性:
1>.通过O(1)的磁盘数据结构提供消息的持久化,这种结构对于即使数以TB的消息存储也能够保持长时间的稳定性能。
2>.高吞吐量:即使是非常普通的硬件Kafka也可以支持每秒数百万的消息。
3>.支持通过Kafka服务器和消费机集群来分区消息。
4>.支持Hadoop并行数据加载。
Kafka常用术语
Broker
Kafka集群包含一个或多个服务器,这种服务器被称为broker
Topic
每条发布到Kafka集群的消息都有一个类别,这个类别被称为Topic。(物理上不同Topic的消息分开存储,逻辑上一个Topic的消息
虽然保存于一个或多个broker上但用户只需指定消息的Topic即可生产或消费数据而不必关心数据存于何处)
Partition
Partition是物理上的概念,每个Topic包含一个或多个Partition.为了更好的实现负载均衡和消息的顺序性,kafka的producer在
分发消息时可以通过分发策略发送给指定的partition。实现分发的程序是需要制定消息的key值,而kafka通过key进行策略分发。
Producer
负责发布消息到Kafka broker
Consumer
消息消费者,向Kafka broker读取消息的客户端。
Consumer Group
每个Consumer属于一个特定的ConsumerGroup(可为每个Consumer指定group name,若不指定group name则属于默认的group)。
Kafka官网在哪?
http://kafka.apache.org/
Kafka安装与配置
JDK安装
下载JDK (注意:直接复制到下载工具进行下载,版本请使用JDK7,JDK8有可能不兼容kafka_2.11-0.8.2.1)
cd /usr/local/src
wget http://download.oracle.com/otn-pub/java/jdk/7u79-b15/jdk-7u79-linux-x64.rpm
chmod +x jdk-7u79-linux-x64.rpm # 添加执行权限
rpm -ivh jdk-7u79-linux-x64.rpm #安装
cd /usr/java/ #安装完成之后,可以cd /usr/java/ 到安装目录查看到安装目录查看
添加JDK到系统环境变量
vim /etc/profile #编辑,在最后添加以下代码
export JAVA_HOME=/usr/java/jdk1.7.0_79
export PATH=$PATH:$JAVA_HOME/bin:/usr/bin:/usr/sbin:/bin:/sbin:/usr/X11R6/bin
export CLASSPATH=.:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar
wq! #保存退出
source /etc/profile #使配置文件立即生效
java -version #出现下述信息 则安装成功 可进行下一步
java version "1.7.0_79"
Java(TM) SE Runtime Environment (build 1.7.0_79-b15)
Java HotSpot(TM) 64-Bit Server VM (build 24.79-b02, mixed mode)
You have new mail in /var/spool/mail/root
kafka服务配置
cd /usr/local/src
wget http://archive.apache.org/dist/kafka/0.8.2.1/kafka_2.11-0.8.2.1.tgz
#(kafka_2.11-0.8.2.1.tgz版本是已经编译好的版本,解压就能使用)
tar -xzvf kafka_2.11-0.8.2.1.tgz #解压
mv kafka_2.11-0.8.2.1 /usr/local/kafka #移动到安装目录
mkdir /usr/local/kafka/log/kafka #创建kafka日志目录
mkdir /usr/local/kafka/zookeeper #创建zookeeper目录
mkdir /usr/local/kafka/log/zookeeper #创建zookeeper日志目录
cd /usr/local/kafka/config #进入配置目录
vim server.properties #编辑修改相应的参数
---------------------------------------------server.properties-------------------------------------
broker.id=0
port=9092 #端口号
host.name=192.168.0.11 #服务器IP地址,修改为自己的服务器IP
log.dirs=/usr/local/kafka/log/kafka #日志存放路径,上面创建的目录
zookeeper.connect=localhost:2181 #zookeeper地址和端口,单机配置部署,localhost:2181
log.cleaner.enable=false #topic是否可删除
zookeeper.connection.timeout.ms=6000 #超时设置
-----------------------------------------------------------------------------------------------------
vim zookeeper.properties #编辑修改相应的参数
---------------------------------------------zookeeper.properties------------------------------------
dataDir=/usr/local/kafka/zookeeper #zookeeper数据目录
dataLogDir=/usr/local/kafka/log/zookeeper #zookeeper日志目录
clientPort=2181
maxClientCnxns=100
tickTime=2000
initLimit=10
syncLimit=5
------------------------------------------------------------------------------------------------------
cd /usr/local/kafka
vim kafkastart.sh #创建启动脚本
---------------------------------------------kafkastart.sh--------------------------------------------
#!/bin/sh
#启动zookeeper
/usr/local/kafka/bin/zookeeper-server-start.sh /usr/local/kafka/config/zookeeper.properties &
sleep 3 #等3秒后执行
#启动kafka
/usr/local/kafka/bin/kafka-server-start.sh /usr/local/kafka/config/server.properties &
-------------------------------------------------------------------------------------------------------
vim kafkastop.sh #创建停止脚本
----------------------------------------------kafkastop.sh---------------------------------------------
#!/bin/sh
#启动zookeeper
/usr/local/kafka/bin/zookeeper-server-stop.sh /usr/local/kafka/config/zookeeper.properties &
sleep 3 #等3秒后执行
#启动kafka
/usr/local/kafka/bin/kafka-server-stop.sh /usr/local/kafka/config/server.properties &
-------------------------------------------------------------------------------------------------------
chmod +x kafkastart.sh
chmod +x kafkastop.sh
server.properties 配置说明
name 默认值 描述
broker.id none 每一个boker都有一个唯一的id作为它们的名字.这就允许boker切换到别的主机/端口上,consumer依然知道
enable.zookeeper true 允许注册到zookeeper
log.flush.interval.messages Long.MaxValue 在数据被写入到硬盘和消费者可用前最大累积的消息的数量
log.flush.interval.ms Long.MaxValue 在数据被写入到硬盘前的最大时间
log.flush.scheduler.interval.ms Long.MaxValue 检查数据是否要写入到硬盘的时间间隔。
log.retention.hours 168 控制一个log保留多长个小时
log.retention.bytes -1 控制log文件最大尺寸
log.cleaner.enable false 是否log cleaning
log.cleanup.policy delete delete还是compat.其它控制参数还包括
log.cleaner.threads,log.cleaner.io.max.bytes.per.second,
log.cleaner.dedupe.buffer.size,log.cleaner.io.buffer.size,log.cleaner.io.buffer.load.factor,
log.cleaner.backoff.ms,log.cleaner.min.cleanable.ratio,log.cleaner.delete.retention.ms
log.dir /tmp/kafka-logs 指定log文件的根目录
log.segment.bytes 110241024*1024 单一的log segment文件大小
log.roll.hours 24 * 7 开始一个新的log文件片段的最大时间
message.max.bytes 1000000 + MessageSet.LogOverhead 一个socket 请求的最大字节数
num.network.threads 3 处理网络请求的线程数
num.io.threads 8 处理IO的线程数
background.threads 10 后台线程序
num.partitions 1 默认分区数
socket.send.buffer.bytes 102400 socket SO_SNDBUFF参数
socket.receive.buffer.bytes 102400 socket SO_RCVBUFF参数
zookeeper.connect localhost:2182/kafka 指定zookeeper连接字符串, 格式如hostname:port/chroot。
chroot是一个namespace
zookeeper.connection.timeout.ms 6000 指定客户端连接zookeeper的最大超时时间
zookeeper.session.timeout.ms 6000 连接zk的session超时时间
zookeeper.sync.time.ms 2000 zk follower落后于zk leader的最长时间
producer.properties 配置说明
#指定kafka节点列表,用于获取metadata,不必全部指定
metadata.broker.list=192.168.2.105:9092,192.168.2.106:9092
# 指定分区处理类。默认kafka.producer.DefaultPartitioner,表通过key哈希到对应分区
#partitioner.class=com.meituan.mafka.client.producer.CustomizePartitioner
# 是否压缩,默认0表示不压缩,1表示用gzip压缩,2表示用snappy压缩。压缩后消息中会有头来指明消息压缩类型,
# 故在消费者端消息解压是透明的无需指定。
compression.codec=none
# 指定序列化处理类(mafka client API调用说明-->3.序列化约定wiki),默认为kafka.serializer.DefaultEncoder,
# 即byte[]
serializer.class=com.meituan.mafka.client.codec.MafkaMessageEncoder
# serializer.class=kafka.serializer.DefaultEncoder
# serializer.class=kafka.serializer.StringEncoder
# 如果要压缩消息,这里指定哪些topic要压缩消息,默认empty,表示不压缩。
#compressed.topics=
########### request ack ###############
#消息的确认模式 默认为0
# 0:不保证消息的到达确认,只管发送,低延迟但是会出现消息的丢失,在某个server失败的情况下,有点像TCP
# 1:发送消息,并会等待leader 收到确认后,一定的可靠性
# -1:发送消息,等待leader收到确认,并进行复制操作后,才返回,最高的可靠性
request.required.acks=0
# 在向producer发送ack之前,broker允许等待的最大时间
# 如果超时,broker将会向producer发送一个error ACK.意味着上一次消息因为某种
# 原因未能成功(比如follower未能同步成功)
request.timeout.ms=10000
########## end #####################
# 同步还是异步发送消息,默认“sync”表同步,"async"表异步。异步可以提高发送吞吐量,
# 也意味着消息将会在本地buffer中,并适时批量发送,但是也可能导致丢失未发送过去的消息
producer.type=sync
############## 异步发送 (以下四个异步参数可选) ####################
# 在async模式下,当message被缓存的时间超过此值后,将会批量发送给broker,默认为5000ms
# 此值和batch.num.messages协同工作.
queue.buffering.max.ms = 5000
# 在async模式下,producer端允许buffer的最大消息量
# 无论如何,producer都无法尽快的将消息发送给broker,从而导致消息在producer端大量沉积
# 此时,如果消息的条数达到阀值,将会导致producer端阻塞或者消息被抛弃,默认为10000
queue.buffering.max.messages=20000
# 如果是异步,指定每次批量发送数据量,默认为200
batch.num.messages=500
# 当消息在producer端沉积的条数达到"queue.buffering.max.meesages"后
# 阻塞一定时间后,队列仍然没有enqueue(producer仍然没有发送出任何消息)
# 此时producer可以继续阻塞或者将消息抛弃,此timeout值用于控制"阻塞"的时间
# -1: 无阻塞超时限制,消息不会被抛弃
# 0:立即清空队列,消息被抛弃
queue.enqueue.timeout.ms=-1
################ end ###############
# 当producer接收到error ACK,或者没有接收到ACK时,允许消息重发的次数
# 因为broker并没有完整的机制来避免消息重复,所以当网络异常时(比如ACK丢失)
# 有可能导致broker接收到重复的消息,默认值为3.
message.send.max.retries=3
# producer刷新topic metada的时间间隔,producer需要知道partition leader的位置,以及当前topic的情况
# 因此producer需要一个机制来获取最新的metadata,当producer遇到特定错误时,将会立即刷新
# (比如topic失效,partition丢失,leader失效等),此外也可以通过此参数来配置额外的刷新机制,默认值600000
topic.metadata.refresh.interval.ms=60000
consumer.properties 配置说明
# zookeeper连接服务器地址,此处为线下测试环境配置(kafka消息服务-->kafka broker集群线上部署环境wiki)
# 配置例子:"127.0.0.1:3000,127.0.0.1:3001,127.0.0.1:3002"
zookeeper.connect=192.168.2.225:2181,192.168.2.225:2182,192.168.2.225:2183/config/mobile/mq/mafka
# zookeeper的session过期时间,默认5000ms,用于检测消费者是否挂掉,当消费者挂掉,其他消费者要等该指定时间
# 才能检查到并且触发重新负载均衡
zookeeper.session.timeout.ms=5000
zookeeper.connection.timeout.ms=10000
# 指定多久消费者更新offset到zookeeper中。注意offset更新时基于time而不是每次获得的消息。一旦在更新zookeeper
# 发生异常并重启,将可能拿到已拿到过的消息
zookeeper.sync.time.ms=2000
#指定消费组
group.id=xxx
# 当consumer消费一定量的消息之后,将会自动向zookeeper提交offset信息
# 注意offset信息并不是每消费一次消息就向zk提交一次,而是现在本地保存(内存),并定期提交,默认为true
auto.commit.enable=true
# 自动更新时间。默认60 * 1000
auto.commit.interval.ms=1000
# 当前consumer的标识,可以设定,也可以有系统生成,主要用来跟踪消息消费情况,便于观察
conusmer.id=xxx
# 消费者客户端编号,用于区分不同客户端,默认客户端程序自动产生
client.id=xxxx
# 最大取多少块缓存到消费者(默认10)
queued.max.message.chunks=50
# 当有新的consumer加入到group时,将会reblance,此后将会有partitions的消费端迁移到新
# 的consumer上,如果一个consumer获得了某个partition的消费权限,那么它将会向zk注册
# "Partition Owner registry"节点信息,但是有可能此时旧的consumer尚没有释放此节点,
# 此值用于控制,注册节点的重试次数.
rebalance.max.retries=5
# 获取消息的最大尺寸,broker不会像consumer输出大于此值的消息chunk
# 每次feth将得到多条消息,此值为总大小,提升此值,将会消耗更多的consumer端内存
fetch.min.bytes=6553600
# 当消息的尺寸不足时,server阻塞的时间,如果超时,消息将立即发送给consumer
fetch.wait.max.ms=5000
socket.receive.buffer.bytes=655360
# 如果zookeeper没有offset值或offset值超出范围。那么就给个初始的offset。有smallest、largest、
# anything可选,分别表示给当前最小的offset、当前最大的offset、抛异常。默认largest
auto.offset.reset=smallest
# 指定序列化处理类(mafka client API调用说明-->3.序列化约定wiki),默认为kafka.serializer.DefaultDecoder,
# 即byte[]
derializer.class=com.meituan.mafka.client.codec.MafkaMessageDecoder
参数参考可见:http://debugo.com/kafka-params/
kafka 服务启动
sh /usr/local/kafka/kafkastart.sh #kafka启动
sh /usr/local/kafka/kafkastop.sh #kafka停止
kafka常用命令
创建一个名为test的topic
bin/kafka-topics.sh --create --zookeeper 192.168.1.3:2181 --replication-factor 1 --partitions 5 --topic b
查看当前创建的topic
bin/kafka-topics.sh --zookeeper 192.168.1.3::2181 --list
验证生产消息成功
bin/kafka-run-class.sh kafka.tools.GetOffsetShell --broker-list 192.168.1.3::9092 --topic boyaa --time -1
#(参数解释:--time -1 表示从最新的时间的offset中得到数据条数)
#输出结果每个字段分别表示topic、partition、untilOffset
开启消息生产者
bin/kafka-console-producer.sh --broker-list 192.168.1.3:9092 --sync --topic b
开启消费者
bin/kafka-console-consumer.sh --zookeeper 192.168.201.73:2181 --topic boyaa --from-beginning
#(--from-beginning 如果consumer之前没有建立offset,则从producer最开始的数据读取。)