【莫队算法】【权值分块】bzoj3585 mex

orz PoPoQQQ。

本来蒟蒻以为这种离散化以后就对应不起来的题不能权值分块搞的说。

……结果,实际上>n的权值不会对答案作出贡献。

#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
#define N 200002
#define BN 452
int n,m,num[N],a[N],l[BN],size[BN],anss[N],b[N],sumv[BN];
struct ASK{int l,r,p;}Q[N];
bool operator < (const ASK &a,const ASK &b)
{return num[a.l]!=num[b.l]?num[a.l]<num[b.l]:a.r<b.r;}
void Insert(const int &x){if(x<=n){if(!b[x])++sumv[num[x]];++b[x];}}
void Delete(const int &x){if(x<=n){--b[x];if(!b[x])--sumv[num[x]];}}
int Query(){for(int i=1;;++i) if(sumv[i]<size[i]) for(int j=l[i];;++j) if(!b[j]) return j;}
int main()
{
	scanf("%d%d",&n,&m);
	int sz=sqrt(n),blo=0; if(!sz) sz=1;
	for(int i=1;i<=n;++i)
	  {
	  	scanf("%d",&a[i]);
	  	if(i%sz==1||sz==1) l[++blo]=i;
	  	num[i]=blo; ++size[blo];
	  }
	l[1]=0; num[0]=1; ++size[1];
	for(int i=1;i<=m;++i) {scanf("%d%d",&Q[i].l,&Q[i].r); Q[i].p=i;}
	sort(Q+1,Q+m+1);
    for(int i=Q[1].l;i<=Q[1].r;++i) Insert(a[i]);
    anss[Q[1].p]=Query();
    for(int i=2;i<=m;++i)
      {
        if(Q[i].l<Q[i-1].l) for(int j=Q[i-1].l-1;j>=Q[i].l;--j) Insert(a[j]);
        else for(int j=Q[i-1].l;j<Q[i].l;++j) Delete(a[j]);
        if(Q[i].r<Q[i-1].r) for(int j=Q[i-1].r;j>Q[i].r;--j) Delete(a[j]);
        else for(int j=Q[i-1].r+1;j<=Q[i].r;++j) Insert(a[j]);
        anss[Q[i].p]=Query();
      }
    for(int i=1;i<=m;++i) printf("%d\n",anss[i]);
	return 0;
}

转载于:https://www.cnblogs.com/autsky-jadek/p/4326584.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值