HDU-时间挑战 树状数组

本文介绍了一种使用树状数组解决线段包含问题的方法。通过特定排序策略确保所有包含关系在线段排序中得以体现,并利用树状数组高效查询和更新线段覆盖情况。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这题好像是POJ的一道原题... 首先这题我们能够确定如果一条线段被另外一条线段所包含的话,那么那条包含它的线段的左端点一定小于或者等于这个线段。于是我们按照左端点从小到大排序,左端点相同按照右端点从大到小排序,这样就能够保证所有包含第i条线段的线段一定在前面得到了更新。

接着我们就直接要求前面线段的右区间大于改线段,由于用的树状数组,所以用一个数减去这个右端点,所以该右端点就越靠近左边,所以也就能使上树状数组了,需要注意的当两条线段的属性完全一样时,我们要直接把前面的答案赋值给后面的线段,然后再去更新。

代码如下:

#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <map>
using namespace std;

int N, c[400005], ret[200005], idx;

map<int,int>mp;

struct Node
{
    int l, r, NO;
    bool operator < (Node temp) const
    {
        if (l != temp.l) return l < temp.l;
        return r > temp.r;
    }
}e[200005];

struct High
{
    int h;
    bool operator < (High temp) const
    {
        return h < temp.h;
    } 
    bool operator == (High temp) const
    {
        return h == temp.h;
    }
}H[400005];

int lowbit(int x)
{
    return x & -x;
}

void add(int x, int val)
{
    for (int i = x; i <= 400000; i += lowbit(i)) {
        c[i] += val;
    }
}

int sum(int x)
{
    int ret = 0;
    for (int i = x; i > 0; i -= lowbit(i)) {
        ret += c[i];
    }
    return ret;
}

int main()
{
    while (scanf("%d", &N) == 1) {
        memset(c, 0, sizeof (c));
        memset(ret, 0, sizeof (ret));
        mp.clear();
        idx = -1;
        for (int i = 0; i < N; ++i) {
            scanf("%d %d", &e[i].l, &e[i].r);
            e[i].NO = i;
            H[++idx].h = e[i].l, H[++idx].h = e[i].r;
        }
        sort(H, H+idx+1);
        idx = unique(H, H+idx+1)-H;
        for (int i = 0; i < idx; ++i) {
            mp[H[i].h] = idx - i;
        }
        sort(e, e + N);
        for (int i = 0; i < N; ++i) {
            int pos = mp[e[i].r];
            if (i > 0 && e[i].l == e[i-1].l) {
                if (e[i].r == e[i-1].r) {
                    ret[e[i].NO] = ret[e[i-1].NO];
                }
                else {
                    ret[e[i].NO] = sum(pos);
                }
            }
            else if (i > 0 && e[i].l > e[i-1].l) {
                ret[e[i].NO] = sum(pos);
            }
            else {
                ret[e[i].NO] = 0;
            }
            add( pos, 1 );
        }
        for (int i = 0; i < N; ++i) {
            if (i == 0) {
                printf("%d", ret[i]);
            }
            else {
                printf(" %d", ret[i]);
            }
        }
        puts("");
    }
    return 0;
}
内容概要:本文详细介绍了QY20B型汽车起重机液压系统的设计过程,涵盖其背景、发展史、主要运动机构及其液压回路设计。文章首先概述了汽车起重机的分类和发展历程,强调了液压技术在现代起重机中的重要性。接着,文章深入分析了QY20B型汽车起重机的五大主要运动机构(支腿、回转、伸缩、变幅、起升)的工作原理及相应的液压回路设计。每个回路的设计均考虑了性能要求、功能实现及工作原理,确保系统稳定可靠。此外,文章还详细计算了支腿油缸的受力、液压元件的选择及液压系统的性能验算,确保设计的可行性和安全性。 适合人群:从事工程机械设计、液压系统设计及相关领域的工程师和技术人员,以及对起重机技术感兴趣的高等院校学生和研究人员。 使用场景及目标:①为从事汽车起重机液压系统设计的工程师提供详细的参考案例;②帮助技术人员理解和掌握液压系统设计的关键技术和计算方法;③为高等院校学生提供学习和研究起重机液压系统设计的实用资料。 其他说明:本文不仅提供了详细的液压系统设计过程,还结合了实际工程应用,确保设计的实用性和可靠性。文中引用了大量参考文献,确保设计依据的科学性和权威性。阅读本文有助于读者深入了解汽车起重机液压系统的设计原理和实现方法,为实际工程应用提供有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值