Given a set of banned words S, please find out whether it is possible to construct a string str1..∞ with infinite length that fulfills the following constrains:
- It consists of only the first M types of lowercase letters in the alphabet. For example M = 3, only 'a', 'b' and 'c' are allowed to appear in the string.
- There does not exist such (i, j) that stri..j is a banned word in S (1 <= i <= j < ∞).
- There does not exist such (i, j) that for any k >= i, strk = str(j + k) (1 <= i, j < ∞).
Input
There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:
The first line contains two integers N (1 <= N <= 100) and M (1 <= M <= 26). The following N lines, each line contains contains a non-empty string indicating a banned word in S. The length of each word will not exceed 1000 and the word only consists of lowercase letters.
Output
For each test case, output "Yes" if it is possible to construct such a string, otherwise "No".
Sample Input
2 2 2 aa bb 1 2 aa
Sample Output
No Yes
1 #include <queue> 2 #include <stack> 3 #include <cstdio> 4 #include <cstring> 5 using namespace std; 6 const int CHAR = 26; 7 const int TOT = 100005; 8 int next[TOT][CHAR], fail[TOT]; 9 bool virus[TOT]; 10 int L, root; 11 int m; 12 int newNode() { 13 for (int i=0; i<CHAR; i++) 14 next[L][i]=-1; 15 fail[L]=0; 16 virus[L]=0; 17 return L++; 18 } 19 void insert(char *s) { 20 int now=root; 21 for (int i=0; s[i]; i++) { 22 int ch=s[i]-'a'; 23 if (next[now][ch]==-1) 24 next[now][ch]=newNode(); 25 now=next[now][ch]; 26 } 27 virus[now]=1; 28 } 29 void build() { 30 queue<int> Q; 31 for (int i=0; i<m; i++) { 32 if (next[root][i]==-1) 33 next[root][i]=root; 34 else { 35 fail[next[root][i]]=root; 36 Q.push(next[root][i]); 37 } 38 } 39 while (!Q.empty()) { 40 int now=Q.front(); Q.pop(); 41 virus[now]|=virus[fail[now]]; 42 for (int i=0; i<m; i++) { 43 if (next[now][i]==-1) 44 next[now][i]=next[fail[now]][i]; 45 else { 46 fail[next[now][i]]=next[fail[now]][i]; 47 Q.push(next[now][i]); 48 } 49 } 50 } 51 } 52 /// 53 const int maxn = TOT; 54 const int maxm = TOT*26; 55 int head[maxn], e, Time, id[maxn], dfn[maxn], low[maxn], sz; 56 bool vis[maxn]; 57 stack<int> s; 58 struct node 59 { 60 int v, next; 61 }edge[maxm]; 62 void add_edge(int u, int v) 63 { 64 edge[e].v=v; 65 edge[e].next=head[u]; 66 head[u]=e++; 67 } 68 void init() 69 { 70 memset(head, -1, sizeof(head)); 71 memset(id, 0, sizeof(id)); 72 memset(vis, 0, sizeof(vis)); 73 memset(dfn, 0, sizeof(dfn)); 74 while (!s.empty()) s.pop(); 75 e=Time=sz=0; 76 L=0; 77 root=newNode(); 78 } 79 int Min(int a, int b) 80 { 81 if (a<=b) return a; 82 return b; 83 } 84 void tarjan(int u) 85 { 86 int v; 87 dfn[u]=low[u]=++Time; 88 s.push(u); 89 vis[u]=1; 90 for (int i=head[u]; i!=-1; i=edge[i].next) { 91 v=edge[i].v; 92 if (!dfn[v]) { 93 tarjan(v); 94 low[u]=Min(low[u], low[v]); 95 } 96 else if (vis[v]) low[u]=Min(low[u], dfn[v]); 97 } 98 if (dfn[u]==low[u]) { 99 sz++; 100 do { 101 v=s.top(); 102 s.pop(); 103 id[v]=sz; 104 vis[v]=0; 105 }while(v!=u); 106 } 107 } 108 bool judge() 109 { 110 int cnt; 111 for (int i=0; i<L; i++) { 112 cnt=0; 113 for (int j=head[i]; j!=-1; j=edge[j].next) { 114 if (id[i]==id[edge[j].v]) cnt++; 115 if (cnt>=2) return 1; 116 } 117 } 118 return 0; 119 } 120 char str[1005]; 121 int main() 122 { 123 int cas, n; 124 scanf("%d", &cas); 125 while(cas--) { 126 scanf("%d %d", &n, &m); 127 init(); 128 while (n--) { 129 scanf(" %s", str); 130 insert(str); 131 } 132 build(); 133 for (int i=0; i<L; i++) { 134 if (virus[i]) continue; 135 for (int j=0; j<m; j++) { 136 if (virus[next[i][j]]) continue; 137 add_edge(i, next[i][j]); 138 } 139 } 140 for (int i=0; i<L; i++) { 141 if (!dfn[i]) 142 tarjan(i); 143 } 144 if (judge()) printf("Yes\n"); 145 else printf("No\n"); 146 } 147 return 0; 148 }
通过AC自动机,建立不含禁止串的图,看这个图中每个强联通分量是否只有简单圈。假如是,最后建立的无穷串中肯定有循环节,否则输出Yes。