经过使用Oracle的外部表对Oracle的警告日志文件、跟踪文件进行获取和分析之后,我发现外部表实在是非常易用,甚至到了随心所欲的境地(当然外部表尚不能修改外部文件)。
使用外部表可以很容易的实现网站的访问日志分析。
虽然使用Awstats等工具也可以实现,可是使用Oracle来分析我们更应该得心应手。
而且这一切还是有那么一点点Cool的。
好了,闲言少叙,让我们来看一下我分析的过程。
首先创建路径指向日志存放目录:
[oracle@jumper elog]$ pwd
/opt/oracle/elog
[oracle@jumper elog]$ ls
eygle_access_log.20061016
[oracle@jumper elog]$ sqlplus "/ as sysdba"
SQL*Plus: Release 9.2.0.4.0 - Production on Wed Oct 18 08:59:35 2006
Copyright (c) 1982, 2002, Oracle Corporation. All rights reserved.
Connected to:
Oracle9i Enterprise Edition Release 9.2.0.4.0 - Production
With the Partitioning option
JServer Release 9.2.0.4.0 - Production
SQL> create or replace directory elog
2 as '/opt/oracle/elog';
Directory created.
然后我将这个路径的访问权限授予eygle用户来进行具体操作:
SQL> grant read,write on directory elog to u_test;
Grant succeeded.
选择合适的分隔符创建外部表:
SQL> connect u_test/pwd_test
Connected.
SQL> create table u_test_access_log_20061016
2 ( ip_address_date varchar2(100),
3 acc_file varchar2(400),
4 acc_cdsz varchar2(20),
5 acc_url varchar2(400),
6 left_blank varchar2(10),
7 acc_agent varchar2(400))
8 organization external (
9 type oracle_loader
10 default directory ELOG
11 access parameters (
12 records delimited by newline
13 nobadfile
14 nodiscardfile
15 nologfile
16 fields terminated by '"'
17 missing field values are null
18 )
19 location('u_test_access_log.20061016')
20 ) reject limit unlimited
21 /
Table created.
此时我们就可以对网站的2006年10月16日的访问日志进行分析了。
我们可以先看一下各个字段的分界结果,示例如下:
SQL> select ip_address_date from u_test_access_log_20061016
2 where rownum <11;
IP_ADDRESS_DATE
-------------------------------------------------------------
38.102.128.140 - - [16/Oct/2006:00:00:17 +0800]
66.249.65.113 - - [16/Oct/2006:00:00:19 +0800]
202.160.178.221 - - [16/Oct/2006:00:00:35 +0800]
59.36.78.100 - - [16/Oct/2006:00:00:37 +0800]
59.36.78.100 - - [16/Oct/2006:00:00:38 +0800]
72.30.61.8 - - [16/Oct/2006:00:00:38 +0800]
221.217.84.230 - - [16/Oct/2006:00:00:42 +0800]
221.217.84.230 - - [16/Oct/2006:00:00:42 +0800]
74.6.65.236 - - [16/Oct/2006:00:01:07 +0800]
74.6.73.36 - - [16/Oct/2006:00:01:09 +0800]
10 rows selected.
通过SQL析取出访问的ip地址:
SQL> select substr(ip_address_date,1,instr(ip_address_date,' ')) ip_address
2 from u_test_access_log_20061016 where rownum <11;
IP_ADDRESS
---------------------------------------------------------------------------
38.102.128.140
66.249.65.113
202.160.178.221
59.36.78.100
59.36.78.100
72.30.61.8
221.217.84.230
221.217.84.230
74.6.65.236
74.6.73.36
10 rows selected.
接下来我们就可以很容易的获得当日访问我站点的独立IP数量了:
SQL> set timing on
SQL> select count(distinct(substr(ip_address_date,1,instr(ip_address_date,' ')))) uip
2 from u_test_access_log_20061016;
UIP
----------
7534
Elapsed: 00:00:06.86
因为外部表的处理性能上要差一些,我们记录了一下时间,以上查询大约用了7秒的时间。
我们可以对比一下数据库表的性能。
首先将日志加载到数据库表中:
SQL> create table ealog as
2 select * from u_test_access_log_20061016;
Table created.
SQL> desc ealog;
Name Null? Type
----------------------------------------------------------------- -------- --------------------------------------------
IP_ADDRESS_DATE VARCHAR2(100)
ACC_FILE VARCHAR2(400)
ACC_CDSZ VARCHAR2(20)
ACC_URL VARCHAR2(400)
LEFT_BLANK VARCHAR2(10)
ACC_AGENT VARCHAR2(400)
SQL> select count(*) from ealog;
COUNT(*)
----------
165443
然后我们强制刷新Buffer Cache,消除Cache的影响,再次执行查询: