图的深度优先遍历(DFS)

深度优先遍历连通图的一种遍历策略。其基本思想如下:

设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。上述过程直至从x出发的所有边都已检测过为止。代码示例中遍历如下图所示的图。

代码:

package test.algorithm.FastSlowPointer;

import java.util.Stack;

/**
 * 图的深度优先遍历
 * @author serenity
 *
 */
public class Graph {
	
	// 存储节点信息
	private char[] vertices;
	
	// 存储边信息(邻接矩阵)
	private  int[][] arcs;
	
	// 图的节点数
	private int vexnum;
	
	// 记录节点是否已被遍历
	private boolean[] visited;
	
	// 初始化
	public Graph(int n) {
		  vexnum = n;
		  vertices = new char[n];
		  arcs = new int[n][n];
		  visited = new boolean[n];
		  for (int i = 0; i < vexnum; i++) {
		     for (int j = 0; j < vexnum; j++) {
		     arcs[i][j] = 0;
		     }
		  }

	}
	
	// 添加边(无向图)
	public void addEdge(int i, int j) {
		  // 边的头尾不能为同一节点
		  if (i == j)return;
		  
		  arcs[i][j] = 1;
		  arcs[j][i] = 1;
	}
	
	// 设置节点集
	public void setVertices(char[] vertices) {
		this.vertices = vertices;
	}
	
	// 设置节点访问标记
	public void setVisited(boolean[] visited) {
		this.visited = visited;
	}

	// 打印遍历节点
	public void visit(int i){
		System.out.print(vertices[i] + " ");
	}
	
	// 从第i个节点开始深度优先遍历
	private void traverse(int i){
		// 标记第i个节点已遍历
		visited[i] = true;
		// 打印当前遍历的节点
		visit(i);
		
		// 遍历邻接矩阵中第i个节点的直接联通关系
		for(int j=0;j<vexnum;j++){
			// 目标节点与当前节点直接联通,并且该节点还没有被访问,递归
			if(arcs[i][j]==1 && visited[j]==false){
				traverse(j);
			}
		}
	}
	
	// 图的深度优先遍历(递归)
	public void DFSTraverse(){
		// 初始化节点遍历标记
		for (int i = 0; i < vexnum; i++) {
			visited[i] = false;
		}
		
		// 从没有被遍历的节点开始深度遍历
		for(int i=0;i<vexnum;i++){
			if(visited[i]==false){
				// 若是连通图,只会执行一次
				traverse(i);
			}
		}
	}
	
	// 图的深度优先遍历(非递归)
	public void DFSTraverse2(){
		// 初始化节点遍历标记
		for (int i = 0; i < vexnum; i++) {
			visited[i] = false;
		}
		
		Stack<Integer> s = new Stack<Integer>();
		for(int i=0;i<vexnum;i++){
			if(!visited[i]){
				//连通子图起始节点
				s.add(i);
				do{	
					// 出栈
					int curr = s.pop();
					
					// 如果该节点还没有被遍历,则遍历该节点并将子节点入栈
					if(visited[curr]==false){
						// 遍历并打印
						visit(curr);
						visited[curr] = true;
						
						// 没遍历的子节点入栈
						for(int j=vexnum-1; j>=0 ; j-- ){
							if(arcs[curr][j]==1 && visited[j]==false){
								s.add(j);
							}
						}
					}
				}while(!s.isEmpty());
			}
		}
	}
	
	public static void main(String[] args) {
		Graph g = new Graph(9);
		char[] vertices = {'A','B','C','D','E','F','G','H','I'};
		g.setVertices(vertices);
		
		g.addEdge(0, 1);
		g.addEdge(0, 5);
		g.addEdge(1, 0);
		g.addEdge(1, 2);
		g.addEdge(1, 6);
		g.addEdge(1, 8);
		g.addEdge(2, 1);
		g.addEdge(2, 3);
		g.addEdge(2, 8);
		g.addEdge(3, 2);
		g.addEdge(3, 4);
		g.addEdge(3, 6);
		g.addEdge(3, 7);
		g.addEdge(3, 8);
		g.addEdge(4, 3);
		g.addEdge(4, 5);
		g.addEdge(4, 7);
		g.addEdge(5, 0);
		g.addEdge(5, 4);
		g.addEdge(5, 6);
		g.addEdge(6, 1);
		g.addEdge(6, 3);
		g.addEdge(6, 5);
		g.addEdge(6, 7);
		g.addEdge(7, 3);
		g.addEdge(7, 4);
		g.addEdge(7, 6);
		g.addEdge(8, 1);
		g.addEdge(8, 2);
		g.addEdge(8, 3);
		
		System.out.print("深度优先遍历(递归):");
		g.DFSTraverse();
		
		System.out.println();
		
		System.out.print("深度优先遍历(非递归):");
		g.DFSTraverse2();
	}

}



转载于:https://my.oschina.net/u/140462/blog/281268

深度优先遍历DFS)是一种用于遍历或搜索树或的算法。该算法从根节点开始,尽可能深地访问每个节点,直到到达叶子节点为止。然后回溯到上一个节点,继续访问其他节点,直到遍历完整个树或。 以下是深度优先遍历的伪代码: ``` DFS(G, v): visited[v] = true for each w in G.adjacent(v) do if not visited[w] then DFS(G, w) ``` 其中,G表示,v表示起始节点,visited表示节点是否被访问过的标记。 以为例,假设从节点A开始进行深度优先遍历,遍历过程如下: 1.访问节点A,将visited[A]标记为true。 2.从节点A出发,访问其邻接节点B,将visited[B]标记为true。 3.从节点B出发,访问其邻接节点D,将visited[D]标记为true。 4.从节点D出发,发现没有未访问的邻接节点,回溯到节点B。 5.从节点B出发,访问其邻接节点E,将visited[E]标记为true。 6.从节点E出发,访问其邻接节点G,将visited[G]标记为true。 7.从节点G出发,发现没有未访问的邻接节点,回溯到节点E。 8.从节点E出发,发现没有未访问的邻接节点,回溯到节点B。 9.从节点B出发,发现没有未访问的邻接节点,回溯到节点A。 10.从节点A出发,访问其邻接节点C,将visited[C]标记为true。 11.从节点C出发,访问其邻接节点F,将visited[F]标记为true。 12.从节点F出发,发现没有未访问的邻接节点,回溯到节点C。 13.从节点C出发,发现没有未访问的邻接节点,回溯到节点A。 14.遍历结束。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值