深度优先遍历是连通图的一种遍历策略。其基本思想如下:
设x是当前被访问顶点,在对x做过访问标记后,选择一条从x出发的未检测过的边(x,y)。若发现顶点y已访问过,则重新选择另一条从x出发的未检测过的边,否则沿边(x,y)到达未曾访问过的y,对y访问并将其标记为已访问过;然后从y开始搜索,直到搜索完从y出发的所有路径,即访问完所有从y出发可达的顶点之后,才回溯到顶点x,并且再选择一条从x出发的未检测过的边。上述过程直至从x出发的所有边都已检测过为止。代码示例中遍历如下图所示的图。
代码:
package test.algorithm.FastSlowPointer;
import java.util.Stack;
/**
* 图的深度优先遍历
* @author serenity
*
*/
public class Graph {
// 存储节点信息
private char[] vertices;
// 存储边信息(邻接矩阵)
private int[][] arcs;
// 图的节点数
private int vexnum;
// 记录节点是否已被遍历
private boolean[] visited;
// 初始化
public Graph(int n) {
vexnum = n;
vertices = new char[n];
arcs = new int[n][n];
visited = new boolean[n];
for (int i = 0; i < vexnum; i++) {
for (int j = 0; j < vexnum; j++) {
arcs[i][j] = 0;
}
}
}
// 添加边(无向图)
public void addEdge(int i, int j) {
// 边的头尾不能为同一节点
if (i == j)return;
arcs[i][j] = 1;
arcs[j][i] = 1;
}
// 设置节点集
public void setVertices(char[] vertices) {
this.vertices = vertices;
}
// 设置节点访问标记
public void setVisited(boolean[] visited) {
this.visited = visited;
}
// 打印遍历节点
public void visit(int i){
System.out.print(vertices[i] + " ");
}
// 从第i个节点开始深度优先遍历
private void traverse(int i){
// 标记第i个节点已遍历
visited[i] = true;
// 打印当前遍历的节点
visit(i);
// 遍历邻接矩阵中第i个节点的直接联通关系
for(int j=0;j<vexnum;j++){
// 目标节点与当前节点直接联通,并且该节点还没有被访问,递归
if(arcs[i][j]==1 && visited[j]==false){
traverse(j);
}
}
}
// 图的深度优先遍历(递归)
public void DFSTraverse(){
// 初始化节点遍历标记
for (int i = 0; i < vexnum; i++) {
visited[i] = false;
}
// 从没有被遍历的节点开始深度遍历
for(int i=0;i<vexnum;i++){
if(visited[i]==false){
// 若是连通图,只会执行一次
traverse(i);
}
}
}
// 图的深度优先遍历(非递归)
public void DFSTraverse2(){
// 初始化节点遍历标记
for (int i = 0; i < vexnum; i++) {
visited[i] = false;
}
Stack<Integer> s = new Stack<Integer>();
for(int i=0;i<vexnum;i++){
if(!visited[i]){
//连通子图起始节点
s.add(i);
do{
// 出栈
int curr = s.pop();
// 如果该节点还没有被遍历,则遍历该节点并将子节点入栈
if(visited[curr]==false){
// 遍历并打印
visit(curr);
visited[curr] = true;
// 没遍历的子节点入栈
for(int j=vexnum-1; j>=0 ; j-- ){
if(arcs[curr][j]==1 && visited[j]==false){
s.add(j);
}
}
}
}while(!s.isEmpty());
}
}
}
public static void main(String[] args) {
Graph g = new Graph(9);
char[] vertices = {'A','B','C','D','E','F','G','H','I'};
g.setVertices(vertices);
g.addEdge(0, 1);
g.addEdge(0, 5);
g.addEdge(1, 0);
g.addEdge(1, 2);
g.addEdge(1, 6);
g.addEdge(1, 8);
g.addEdge(2, 1);
g.addEdge(2, 3);
g.addEdge(2, 8);
g.addEdge(3, 2);
g.addEdge(3, 4);
g.addEdge(3, 6);
g.addEdge(3, 7);
g.addEdge(3, 8);
g.addEdge(4, 3);
g.addEdge(4, 5);
g.addEdge(4, 7);
g.addEdge(5, 0);
g.addEdge(5, 4);
g.addEdge(5, 6);
g.addEdge(6, 1);
g.addEdge(6, 3);
g.addEdge(6, 5);
g.addEdge(6, 7);
g.addEdge(7, 3);
g.addEdge(7, 4);
g.addEdge(7, 6);
g.addEdge(8, 1);
g.addEdge(8, 2);
g.addEdge(8, 3);
System.out.print("深度优先遍历(递归):");
g.DFSTraverse();
System.out.println();
System.out.print("深度优先遍历(非递归):");
g.DFSTraverse2();
}
}