URAL 1994 The Emperor's plan

期望$dp$。

$dp[i][j]$表示第$1$种人有$i$个,第$2$种人有$j$个的情况下,到达目标状态的期望值。初始化$dp[i][0]=i$。

枚举一下这个状态死多少人,取个$max$,最后$dp[n-k][k]$就是答案。

#include<map>
#include<set>
#include<ctime>
#include<cmath>
#include<queue>
#include<string>
#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std;
#define ms(x,y) memset(x,y,sizeof(x))
#define rep(i,j,k) for(int i=j;i<=k;i++)
#define per(i,j,k) for(int i=j;i>=k;i--)
#define loop(i,j,k) for (int i=j;i!=-1;i=k[i])
#define inone(x) scanf("%d",&x)
#define intwo(x,y) scanf("%d%d",&x,&y)
#define inthr(x,y,z) scanf("%d%d%d",&x,&y,&z)
#define infou(x,y,z,p) scanf("%d%d%d%d",&x,&y,&z,&p)
#define lson x<<1,l,mid
#define rson x<<1|1,mid+1,r
#define mp(i,j) make_pair(i,j)
#define ft first
#define sd second
typedef long long LL;
typedef pair<int, int> pii;
const int low(int x) { return x&-x; }
const int INF = 0x7FFFFFFF;
const int mod = 1e9 + 7;
const int N = 1e6 + 10;
const int M = 1e4 + 1;
const double eps = 1e-10;

double dp[210][210];
double c[210][210];

int n,k;

void init()
{
    c[0][0]=1;
    for(int i=1;i<=200;i++)
    {
        c[i][0]=1;
        c[i][i]=1;
        for(int j=1;j<=200;j++)
        {
            c[i][j] = c[i-1][j] + c[i-1][j-1];
        }
    }
}

int main()
{
    init();
    while(~scanf("%d%d",&n,&k))
    {
        memset(dp,0,sizeof dp);
        for(int i=1;i<=n-k;i++) dp[i][0]=1.0*i;

        for(int i=0;i<=n-k;i++)
        {
            for(int j=0;j<=k;j++)
            {
                if(j==0) continue;

                int pn = i-j;
                int pk = j;

                for(int p=1;p<=pn+pk;p++)
                {
                    double sum=0;
                    for(int L=0;L<=pn;L++)
                    {
                        int R = p-L;
                        if(R<0) break;
                        if(pk<R) continue;
                        sum=sum+dp[pn-L][pk-R]*c[pn][L]*c[pk][R]/c[pn+pk][p];
                    }
                    dp[i][j]=max(sum,dp[i][j]);
                }
            }
        }

        printf("%.10f\n",dp[n-k][k]);

    }
    return 0;
}

 

转载于:https://www.cnblogs.com/zufezzt/p/6696289.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值