HDU 6425 Rikka with Badminton(组合问题签到)题解

题意:问你有多少种选法使得不能满足大于等于2个拍子且大于等于1个球。

思路:数学组合问题,分类讨论一下,刚开始的时候分的很乱,写的乱七八糟的...还有注意MOD,基本上有大数相乘的地方都要先MOD一下,不然可能会溢出。

代码:

#include<set>
#include<map>
#include<cstdio>
#include<utility>
#include<cmath>
#include<stack>
#include<vector>
#include<queue>
#include<cstring>
#include<string>
#include<sstream>
#include<iostream>
#include<algorithm>
#define ll long long
#define ull unsigned long long
using namespace std;
const int maxn = 100+10;
const int seed = 131;
const int MOD = 998244353;
const int INF = 0x3f3f3f3f;
ll pow_mul(ll a,ll b){
    ll ans = 1;
    while(b){
        if(b & 1) ans = (ans * a) % MOD;
        a = (a * a) % MOD;
        b >>= 1;
    }
    return ans;
}
int main(){
    int T;
    scanf("%d",&T);
    ll a,b,c,d,n;    //都没,有拍,有球,都有
    while(T--){
        scanf("%lld%lld%lld%lld",&a,&b,&c,&d);
        ll ans = 0;
        if(b) ans = (ans + (pow_mul(2,a) * (pow_mul(2,b) - 1)) % MOD) % MOD;   //只有拍
        if(c) ans = (ans + (pow_mul(2,a) * (pow_mul(2,c) - 1)) % MOD) % MOD;   //只有球
        if(b && c) ans = (ans + ((pow_mul(2,a) * (pow_mul(2,c) - 1)) % MOD) * b) % MOD;    //一拍N球
        if(d) ans = (ans + (pow_mul(2,a + c) * d) % MOD) % MOD; //一拍N球
        ans += pow_mul(2,a);    //都没有
        ans %= MOD;
        printf("%lld\n",ans);
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/KirinSB/p/9507375.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值