转载

《微分方程_附应用及历史注记》Page 4.

原文链接:http://www.cnblogs.com/yeluqing/archive/2012/10/25/3827887.html

$xy=\log y +c$,则
\begin{equation}
\label{eq:25.15.13}
\frac{dy}{dx}=\frac{y^2}{1-xy}
\end{equation}


证明:令$F(x,y)=xy-\log y-c$.当$F(x_0,y_0)=0$时,可得$x_0=\frac{\log y_{0}+c}{y_{0}}$.易得
\begin{equation}
\label{eq:25.15.14}
\frac{\partial F}{\partial y}(x,y)=x-\frac{1}{y}
\end{equation}
因此
\begin{equation}
\label{eq:25.15.23}
\frac{\partial F}{\partial y}(x_0,y_0)=x_0-\frac{1}{y_0}
\end{equation}
当$\frac{\partial F}{\partial y}(x_0,y_0)\neq 0$时,$x_0y_0\neq 1$.此时,根据隐函数定理,在$(x_0,y_0)$的足够小的邻域$D$内,$\forall (x,y)\in D$,都有
\begin{equation}
\label{eq:25.16.04}
\frac{dy}{dx}=\frac{y^2}{1-xy}
\end{equation}
当$\frac{\partial F}{\partial y}(x_0,y_0)=0$时,可得$y_0=e^{1-c},x_0=\frac{1}{e^{1-c}}$.函数在这个点处不可导(为什么?提示:考虑$x$对$y$的导数,为0.再根据反函数定理).(当$c=1$时情形如图

 

转载于:https://www.cnblogs.com/yeluqing/archive/2012/10/25/3827887.html

文章最后发布于: 2012-10-25 16:12:00
展开阅读全文
0 个人打赏

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 1024 设计师: 上身试试

分享到微信朋友圈

×

扫一扫,手机浏览