Google to Stop Censoring Search Results in China After Hack Attack

谷歌决定停止在中国的搜索结果审查,这一转变是在发现来自中国的黑客攻击人权活动家的电子邮件账户之后作出的。谷歌表示,如果与中国政府无法就监视问题和停止审查达成一致,它可能撤出中国市场。谷歌自2006年起为了在中国运营而同意审查搜索结果,但现在正重新评估其在中国的业务可行性。
摘要由CSDN通过智能技术生成
Comments(55)
Posted by: daren_gray | 01/13/10 | 2:25 pm

I have a bad habit of making my thoughts known in a shrill and immature manner. Also, I think some of my humor comes off awkwardly to the eyes of some. Apologies for tone.

Posted by: kafa | 01/13/10 | 2:43 pm

@Ryan Singel & daren_gray
I am inclined to side with the theory that the corporations adjust according to their own needs instead of the public good - Google included. See Dow and Union Carbide in Bhopal (http://en.wikipedia.org/wiki/Bhopal_disaster) where the big guys are openly saying they are not the ones responsible.

Posted by: QuickThinking | 01/13/10 | 3:47 pm

@daren_grey - Don’t apologize for tone. Make them apologize for devolving everything into name calling. They didn’t read (in the sense that reading should be closely followed by comprehension) what was written in the article, and they didn’t read what you wrote in response. It can’t be helped that to make your point, which should have been obvious, you had to go back and analyze the actual lines in the article. Having been corrected and hurt feelings combined with Google fanboy-ism, they want to brand you a condescending nut. In their world, you aren’t allowed to believe in anything strongly enough to analyze it, you either believe and shout emotional nonsense, or you are cowed into silence.
-
Personally, I think very highly of Google, and I hope that the ambiguous wording in the statement above is nothing more than lawyers doing their duty, while the people making decisions work out a viable exit strategy. Either way, I will wait and see, read and think objectively, while this whole thing develops a bit more.

Posted by: daren_gray_enjoys_sucking_cock | 01/13/10 | 6:11 pm

@daren_gray
Douchebag, plain and simple…

Posted by: darkenergy | 01/14/10 | 1:53 am

No matter what their reasons are, this is a great move forward. I have a friend who’s in China for a year–the censorship is just unbelievable, and any move forward to make the Chinese government realize that this kind of totalitarian lockdown doesn’t work in a modern society is great.


Read More http://www.wired.com/threatlevel/2010/01/google-censorship-china/#ixzz0ceGedWhz

 
注:完全转载无个人观点

转载于:https://www.cnblogs.com/kungfupanda/archive/2010/01/15/1648461.html

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
AI实战-信用卡申请风险识别数据集分析预测实例(含9个源代码+91.57 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:9个代码,共44.98 KB;数据大小:1个文件共91.57 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn wordcloud.WordCloud sklearn.model_selection.train_test_split sklearn.preprocessing.LabelEncoder sklearn.ensemble.RandomForestClassifier sklearn.metrics.accuracy_score sklearn.metrics.classification_report sklearn.metrics.confusion_matrix plotly.express plotly.subplots.make_subplots plotly.graph_objects plotly.io sklearn.base.BaseEstimator sklearn.base.TransformerMixin sklearn.preprocessing.StandardScaler sklearn.preprocessing.OrdinalEncoder sklearn.pipeline.make_pipeline sklearn.compose.make_column_transformer imblearn.over_sampling.RandomOverSampler sklearn.svm.SVC sklearn.tree.DecisionTreeClassifier sklearn.ensemble.HistGradientBoostingClassifier sklearn.ensemble.GradientBoostingClassifier sklearn.neighbors.KNeighborsClassifier sklearn.model_selection.GridSearchCV sklearn.ensemble.VotingClassifier torch lightning torchmetrics.Accuracy torch.utils.data.Dataset torch.utils.data.DataLoader numpy warnings matplotlib wordcloud.STOPWORDS collections.Counter sklearn.ensemble.ExtraTreesClassifier sklearn.ensemble.AdaBoostClassifier sklearn.ensemble.BaggingClassifier xgboost.XGBClassifier lightgbm.LGBMClassifier catboost.CatBoostClassifier sklearn.linear_model.LogisticRegression sklearn.model_selection.RandomizedSearchCV sklearn.preprocessing.MinMaxScaler imblearn.over_sampling.SMOTE
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值