Uva 11300 - Spreading the Wealth

/*
题目: 分金币  围着桌子坐n人 每人有一些金币,大家之间可以相互给钱,
最终使每个人拥有相同的金币。求最小移动金币个数。
考查数学知识:中位数的距离的问题,见“解题手册”P6页
 其他没有难度,注意找规律。边学边记吧 谁让我笨了!
 题型可以举一反三。注意。
*///AC

 1 #include<stdio.h>
 2 #include<string.h>
 3 //#include<cstdio>
 4 #include<algorithm>
 5 using namespace std;
 6 const int M=1000010;
 7   long long c[M],a[M];
 8 int main()
 9 {
10     long long n,i,sum,m,x1,ct,f;
11 
12     while(scanf("%lld",&n)!=EOF)
13     {
14       getchar();//不知道怎么一输入就多打印出来0之类的字符 runtime error了 只能getchar()吸收一下
15        c[0]=0;//谁能告诉我这是咋的了
16        sum=0;
17        ct=0;
18        for(i=1;i<=n;i++)
19        {
20            scanf("%11d",&a[i]);
21            getchar();
22            sum+=a[i];
23        }
24        m=sum/n;
25        for(i=1;i<n;i++)
26        {
27            c[i]=a[i]+c[i-1]-m;//这里是开大整型的关键
28            //关键 关系表达式
29        }
30        sort(c,c+n);
31        f=n/2;
32        x1=c[f];
33        for(i=0;i<n;i++)
34        {
35            ct+=abs(x1-c[i]);//绝对距离
36        }
37        printf("%lld\n",ct);
38     }
39     return 0;
40 }
41 /*
42 3
43 100
44 100
45 100
46 4
47 1
48 2
49 5
50 4
51 
52 */

 

转载于:https://www.cnblogs.com/someonelikeyou/archive/2013/03/13/2958138.html

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值