算法描述:
A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).
How many possible unique paths are there?
Above is a 7 x 3 grid. How many possible unique paths are there?
Note: m and n will be at most 100.
Example 1:
Input: m = 3, n = 2 Output: 3 Explanation: From the top-left corner, there are a total of 3 ways to reach the bottom-right corner: 1. Right -> Right -> Down 2. Right -> Down -> Right 3. Down -> Right -> Right
Example 2:
Input: m = 7, n = 3 Output: 28
解题思路:动态规划,dp[i][j] = dp[i-1][j] +dp[i][j-1];
int uniquePaths(int m, int n) { vector<vector<int>> dp(m,vector<int>(n,0)); for(int i=0; i < m; i++) dp[i][0] = 1; for(int j =0; j < n; j++) dp[0][j] = 1; for(int i = 1; i <m; i++){ for(int j =1; j <n; j++){ dp[i][j] = dp[i-1][j]+dp[i][j-1]; } } return dp[m-1][n-1]; }