【数据结构】——稀疏矩阵转置

  矩阵是线性代数中的一个知识,刚开始学习的时候可能感觉不到它有什么用处,最初的感觉就是对二维数据的操作。其实现实生活中矩阵的用处太大了,设计领域相当的广泛。在此只讨论稀疏矩阵的转置问题;

  可能看到矩阵就会想到二维数组,比如这样一个矩阵:

  你可能会想到用二维数组来存放此矩阵中的元素,就像这样:int text[][5] = {{0,5,6,0,4},{0,0,0,0,0},{1,0,0,0,0},{1,0,0,0,0},{0,2,0,0,1}};

这样好像也没有什么不好。我们再来看看这个矩阵,五行五列,可以包含二十五个元素,但是此矩阵只有七个元素。但是我们在存放数据的时候分配了二十五块int单元。这样是不是有点太浪费了。如果我们只存储这七个元素我想会节省一部分内存空间。但是如果我们只存储矩阵中的元素还是不行的,因为只有元素我们就无法还原矩阵,我们还需要此元素的行列值。这样就好办了。我们声明一个结构体来表示一个元素。就像这样:

1 typedef struct juzhen
2 {
3     int row;        //
4     int col;        //
5     int value;        //元素值
6 };

  这样存储一个元素就会用到三个存储单元,七个就是二十一个存储单元,可能与二十五个没多大差别,但是如果矩阵的行列是一个很大的值,而且又是稀疏矩阵,这样做就可以节省很大的空间。这种存储结构只限于稀疏矩阵。

  解决了存储结构,就开始矩阵的转置吧!!!

  首先我们需要一个矩阵,就按照上图给的矩阵好了,按照此矩阵做一个二维数组:

1 int text[][5] = {{0,5,6,0,4},{0,0,0,0,0},{1,0,0,0,0},{1,0,0,0,0},{0,2,0,0,1}};

  就像这样;我们需要定义一个数组来表示稀疏矩阵,并赋值;

 1 #define MAX_TERM 15
 2 
 3 struct juzhen a[MAX_TERM];        //存放矩阵中元素数值不为零的元素
 4 
 5 int chushi(struct juzhen a[MAX_TERM])            //初始化稀疏矩阵
 6 {
 7     int count_value = 0;    //统计矩阵中元素数值不为零的元素的总和
 8     int i,j;
 9     int count_a = 1;
10     for(i = 0;i < N;i++)
11     {
12         for(j = 0;j < N;j++)
13         {
14             if(text[i][j] != 0)
15             {
16                 a[count_a].row = i;
17                 a[count_a].col = j;
18                 a[count_a].value = text[i][j];
19                 count_a++;
20             }
21         }
22     }
23     a[0].col = 5;            //矩阵的总列数
24     a[0].row = 5;            //矩阵的总行数
25     a[0].value = --count_a;    //矩阵中的元素个数
26 
27     return count_a;
28 }

  在初始化矩阵数组的时候为了方便转置矩阵时的操作,我们把数组的第一个元素设置为矩阵的列数,行数和元素总数;

  矩阵有了,存放矩阵元素的数组也有了。接下来就是转置矩阵的函数了。

  我们在转置矩阵的时候会需要一个数组来保存转置后的矩阵,定义为:

struct juzhen b[MAX_TERM];//转置后的矩阵

  主要思想,两层循环,第一层循环控制矩阵的行,第二层循环控制数组a的行。由于转置矩阵即把矩阵中元素的列行对换一下,并且按照行排序;所以我们在第二层循环中做一个判断,if(a[j].col == i) 【i控制第一层循环,j控制第二层循环】 如果为真值则执行:

                b[count_b].row = a[j].col;
                b[count_b].col = a[j].row;
                b[count_b].value = a[j].value;

整个函数如下:

void zhuanzhi_1(struct juzhen a[MAX_TERM],struct juzhen b[MAX_TERM])            //转置矩阵方法一
{
    int i,j;
    int count_b = 1;        //b的当前元素下标
    b[0].row = a[0].col;  
    b[0].col = a[0].row;
    b[0].value = a[0].value;
    for(i = 0;i < a[0].col;i++)
    {
        for(j = 1;j <= a[0].value;j++)
        {
            if(a[j].col == i)    //有种排序效果
            {
                b[count_b].row = a[j].col;
                b[count_b].col = a[j].row;
                b[count_b].value = a[j].value;
                count_b++;
            }
        }
    }
}

  用此方法可以有效的转置矩阵,我们来看一下此函数的时间复杂度:O(cols * elements)——矩阵的列*矩阵的元素总和;

  如果元素很多就会浪费很多的时间。有没有办法让两层循环变成一层循环呢?付出空间上的代价,换取时间效率;

  我们只用一层循环来遍历数组a中所有元素,并把该元素放到指定的位置。这样我们就需要一个数组star来存放第i个元素所在位置。在定义这个数组之前,我们还需要一个数组term来实现统计矩阵第i行元素的数量。这样我们才能更方便的知道第i个元素应该存放的位置。

    int term[N],star[N];        //保存转置矩阵第i行元素的数量  保存第i行开始位置    
    int n = a[0].value;
    int i,j,k;
    int b_star;

    for(i = 0;i < N;i++)    
        term[i] = 0;

    for(j = 0;j <= n;j++)
        term[a[j].col]++;
    
    star[0] = 1;
    for(k = 1;k < N;k++)
        star[k] = star[k - 1] + term[k - 1];

第一个循环初始化term,每个元素都为零。第二个循环是为了统计第i行元素的数量。第三个循环是设置第i个元素所在的位置。因为数组a的第一个元素是存放行列和元素的总数,因此第三个循环要从k = 1开始。此时两个数组的元素为:

下一步就是遍历a中的所有元素,然后根据a[i].col的值来把a[i].value放到指定的位置。

    b[0].col = a[0].col;
    b[0].row = a[0].row;
    b[0].value = a[0].value;
    for(i = 1;i <= n;i++)
    {
        b_star = star[a[i].col]++;
        b[b_star].col = a[i].row;
        b[b_star].row = a[i].col;
        b[b_star].value = a[i].value;
    }

需要注意的是b的第一个元素与a中的第一个元素是同样的。b_star = star[a[i].col]++;因为当term[1] = 2;而star[1] = 3;就是a[i].col = 1时有两个元素,第一个元素的位置是star[a[i].col];而第二个元素的位置就是star[a[i].col] + 1所以在此用star[a[i].col]++。为下一个元素设置相应的位置;

完整函数:

void zhuanhuan_2(struct juzhen a[MAX_TERM],struct juzhen b[MAX_TERM])
{
    int term[N],star[N];        //保存转置矩阵第i行元素的数量  保存第i行开始位置    
    int n = a[0].value;
    int i,j,k;
    int b_star;

    for(i = 0;i < N;i++)    
        term[i] = 0;

    for(j = 1;j <= n;j++)
        term[a[j].col]++;
    
    star[0] = 1;
    for(k = 1;k < N;k++)
        star[k] = star[k - 1] + term[k - 1];

    b[0].col = a[0].col;
    b[0].row = a[0].row;
    b[0].value = a[0].value;
    for(i = 1;i <= n;i++)
    {
        b_star = star[a[i].col]++;
        b[b_star].col = a[i].row;
        b[b_star].row = a[i].col;
        b[b_star].value = a[i].value;
    }

}

此函数每个循环体的执行次数分别为cols cols elements elements 时间复杂度为O(cols + elements)和O(cols * elements)相差好多,尤其是clos 和 elements很大的时候;

完整的测试程序:

完整代码
  1 #include<stdio.h>
  2 #define N 5
  3 #define MAX_TERM 15
  4 
  5 typedef struct juzhen
  6 {
  7     int row;        //
  8     int col;        //
  9     int value;        //元素值
 10 };
 11 
 12 int text[][5] = {{0,5,6,0,4},{0,0,0,0,0},{1,0,0,0,0},{1,0,0,0,0},{0,2,0,0,1}};
 13 struct juzhen a[MAX_TERM];        //存放矩阵中元素数值不为零的元素
 14 struct juzhen b[MAX_TERM];        //转置后的矩阵
 15 
 16 int chushi(struct juzhen a[MAX_TERM])            //初始化稀疏矩阵
 17 {
 18     int count_value = 0;    //统计矩阵中元素数值不为零的元素的总和
 19     int i,j;
 20     int count_a = 1;
 21     for(i = 0;i < N;i++)
 22     {
 23         for(j = 0;j < N;j++)
 24         {
 25             if(text[i][j] != 0)
 26             {
 27                 a[count_a].row = i;
 28                 a[count_a].col = j;
 29                 a[count_a].value = text[i][j];
 30                 count_a++;
 31             }
 32         }
 33     }
 34     a[0].col = 5;            //矩阵的总列数
 35     a[0].row = 5;            //矩阵的总行数
 36     a[0].value = --count_a;    //矩阵中的元素个数
 37 
 38     return count_a;
 39 }
 40 
 41 void showjuzhen(struct juzhen a[MAX_TERM],int count_a)        //显示稀疏矩阵
 42 {
 43     int i,j;
 44     int text = 1;
 45     for(i = 0;i < N;i++)
 46     {
 47         for(j = 0;j < N;j++)
 48         {
 49             if(a[text].row == i && a[text].col == j)
 50             {
 51                 printf(" %d ",a[text].value);
 52                 text++;
 53             }
 54             else
 55                 printf(" 0 ");
 56         }
 57         printf("\n");
 58     }
 59 
 60 }
 61 
 62 void showjuzhen_2(struct juzhen a[MAX_TERM],int count_a)            //显示稀疏矩阵方法二
 63 {
 64     int i;
 65     printf(" i row col val\n");
 66     for(i = 0;i < count_a + 1;i++)
 67     {
 68         printf(" %d|  %d   %d   %d\n",i,a[i].row,a[i].col,a[i].value);
 69     }
 70 }
 71 
 72 
 73 void zhuanzhi_1(struct juzhen a[MAX_TERM],struct juzhen b[MAX_TERM])            //转置矩阵方法一
 74 {
 75     int i,j;
 76     int count_b = 1;        //b的当前元素下标
 77     b[0].row = a[0].col;
 78     b[0].col = a[0].row;
 79     b[0].value = a[0].value;
 80     for(i = 0;i < a[0].col;i++)
 81     {
 82         for(j = 1;j <= a[0].value;j++)
 83         {
 84             if(a[j].col == i)
 85             {
 86                 b[count_b].row = a[j].col;
 87                 b[count_b].col = a[j].row;
 88                 b[count_b].value = a[j].value;
 89                 count_b++;
 90             }
 91         }
 92     }
 93 }
 94 
 95 
 96 void zhuanhuan_2(struct juzhen a[MAX_TERM],struct juzhen b[MAX_TERM])
 97 {
 98     int term[N],star[N];        
 99     int n = a[0].value;
100     int i,j,k;
101     int b_star;
102 
103     for(i = 0;i < N;i++)    
104         term[i] = 0;
105 
106     for(j = 0;j <= a[0].value;j++)
107         term[a[j].col]++;
108     
109     star[0] = 1;
110     for(k = 1;k < N;k++)
111         star[k] = star[k - 1] + term[k - 1];
112 
113     b[0].col = a[0].col;
114     b[0].row = a[0].row;
115     b[0].value = a[0].value;
116     for(i = 1;i <= n;i++)
117     {
118         b_star = star[a[i].col]++;
119         b[b_star].col = a[i].row;
120         b[b_star].row = a[i].col;
121         b[b_star].value = a[i].value;
122     }
123 
124 
125     for(i = 0;i < a[0].value + 1;i++)
126         printf(" %d|  %d   %d   %d\n",i,b[i].row,b[i].col,b[i].value);
127 
128 }
129 
130 int main(void)
131 {
132     int count_a;
133     count_a = chushi(a);
134     showjuzhen(a,count_a);
135     showjuzhen_2(a,count_a);
136     printf("\n");
137     zhuanhuan_2(a,b);
138     //zhuanzhi_1(a,b);
139     //showjuzhen(b,count_a);
140     //showjuzhen_2(b,count_a);
141     //return 0;
142 }

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值