【分块答案】【最小割】bzoj1532 [POI2005]Kos-Dicing

引用zky的题解:http://blog.csdn.net/iamzky/article/details/39667859

每条S-T路径代表一次比赛的结果。最小割会尽量让一个人赢得最多。

因为二分总是写挂,所以写了分块答案,比暴力枚举好像快不了多少。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cmath>
using namespace std;
#define INF 2147483647
#define MAXN 20011
#define MAXM 100301
int v[MAXM],cap[MAXM],en,first[MAXN],next[MAXM];
int d[MAXN],cur[MAXN];
queue<int>q;
int n,m,S,T;
void Init_Dinic(){memset(first,-1,sizeof(first)); en=0; S=0; T=n+m+1;}
void AddEdge(const int &U,const int &V,const int &W)
{v[en]=V; cap[en]=W; next[en]=first[U]; first[U]=en++;
v[en]=U; next[en]=first[V]; first[V]=en++;}
bool bfs()
{
    memset(d,-1,sizeof(d)); q.push(S); d[S]=0;
    while(!q.empty())
      {
        int U=q.front(); q.pop();
        for(int i=first[U];i!=-1;i=next[i])
          if(d[v[i]]==-1 && cap[i])
            {
              d[v[i]]=d[U]+1;
              q.push(v[i]);
            }
      }
    return d[T]!=-1;
}
int dfs(int U,int a)
{
    if(U==T || !a) return a;
    int Flow=0,f;
    for(int &i=cur[U];i!=-1;i=next[i])
      if(d[U]+1==d[v[i]] && (f=dfs(v[i],min(a,cap[i]))))
        {
          cap[i]-=f; cap[i^1]+=f;
          Flow+=f; a-=f; if(!a) break;
        }
    if(!Flow) d[U]=-1;
    return Flow;
}
int max_flow()
{
    int tmp=0,Flow=0;
    while(bfs())
      {
        memcpy(cur,first,(n+m+5)*sizeof(int));
        while(tmp=dfs(S,INF)) Flow+=tmp;
      }
    return Flow;
}
int us[10001],vs[10001];
void Rebuild(const int &x)
{
    Init_Dinic();
    for(int i=1;i<=m;++i)
      {
        AddEdge(S,i,1);
        AddEdge(i,us[i]+m,1);
        AddEdge(i,vs[i]+m,1);
      }
    for(int i=1;i<=n;++i) AddEdge(i+m,T,x);
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=m;++i) scanf("%d%d",&us[i],&vs[i]);
    int sz=sqrt(m); int last=0;
    for(int i=1;last<=m;i+=sz)
      {
        Rebuild(i);
        if(max_flow()>=m)
          {
            for(int j=last+1;j<=i;++j)
              {
                Rebuild(j);
                if(max_flow()>=m)
                  {
                    printf("%d\n",j);
                    return 0;
                  }
              }
          }
        last=i;
      }
    return 0;
}

  

转载于:https://www.cnblogs.com/autsky-jadek/p/4175677.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值