POJ 3155 Hard Life(最小割-最大密集子图)

题目链接:http://poj.org/problem?id=3155

题意:给定一个n个点m条边的无向图。输出最大密集子图中的顶点个数和各个顶点编号。

思路:二分答案g,原图中的边(u,v)连边<u,v,1>和<v,u,1>。s和每个点连边<s,i,m>,每个点和汇点连边<i,t,m+2*g-d[i]>。d[i]为每个点的度。

#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <cmath>
#include <vector>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <map>


#define max(x,y) ((x)>(y)?(x):(y))
#define min(x,y) ((x)<(y)?(x):(y))
#define abs(x) ((x)>=0?(x):-(x))
#define i64 long long
#define u32 unsigned int
#define u64 unsigned long long
#define clr(x,y) memset(x,y,sizeof(x))
#define CLR(x) x.clear()
#define ph(x) push(x)
#define pb(x) push_back(x)
#define Len(x) x.length()
#define SZ(x) x.size()
#define PI acos(-1.0)
#define sqr(x) ((x)*(x))
#define MP(x,y) make_pair(x,y)
#define EPS 1e-9

#define FOR0(i,x) for(i=0;i<x;i++)
#define FOR1(i,x) for(i=1;i<=x;i++)
#define FOR(i,a,b) for(i=a;i<=b;i++)
#define FORL0(i,a) for(i=a;i>=0;i--)
#define FORL1(i,a) for(i=a;i>=1;i--)
#define FORL(i,a,b)for(i=a;i>=b;i--)
using namespace std;


void RD(int &x){scanf("%d",&x);}
void RD(u32 &x){scanf("%u",&x);}
void RD(double &x){scanf("%lf",&x);}
void RD(int &x,int &y){scanf("%d%d",&x,&y);}
void RD(u32 &x,u32 &y){scanf("%u%u",&x,&y);}
void RD(double &x,double &y){scanf("%lf%lf",&x,&y);}
void RD(int &x,int &y,int &z){scanf("%d%d%d",&x,&y,&z);}
void RD(int &x,int &y,int &z,int &t){scanf("%d%d%d%d",&x,&y,&z,&t);}
void RD(u32 &x,u32 &y,u32 &z){scanf("%u%u%u",&x,&y,&z);}
void RD(double &x,double &y,double &z){scanf("%lf%lf%lf",&x,&y,&z);}
void RD(char &x){x=getchar();}
void RD(char *s){scanf("%s",s);}
void RD(string &s){cin>>s;}


void PR(int x) {printf("%d\n",x);}
void PR(int x,int y) {printf("%d %d\n",x,y);}
void PR(i64 x) {printf("%lld\n",x);}
void PR(u32 x) {printf("%u\n",x);}
void PR(double x) {printf("%.5lf\n",x);}
void PR(char x) {printf("%c\n",x);}
void PR(char *x) {printf("%s\n",x);}
void PR(string x) {cout<<x<<endl;}


const int INF=1000000000;
const int N=100005;




struct Edge
{
	int u,v;
	double cap,flow;
	int next;
};

Edge edges[30000];
int head[105],e,visit[105];
int n,m,s,t;
int a[1005],b[1005],d[105];
int num[105],h[105],curedge[105],pre[105];
int ans[105];


void add(int u,int v,double cap)
{
	edges[e].u=u;
	edges[e].v=v;
	edges[e].cap=cap;
	edges[e].flow=0.0;
	edges[e].next=head[u];
	head[u]=e++;
}

void Add(int u,int v,double cap)
{
	add(u,v,cap);
	add(v,u,0.0);
}

void init(double mid)
{
	int i;
	clr(head,-1); e=0;
	FOR1(i,m)
	{
		Add(a[i],b[i],1.0);
		Add(b[i],a[i],1.0);
	}
	FOR1(i,n)
	{
		Add(s,i,1.0*m);
		Add(i,t,m+2*mid-d[i]);
	}
}



double Maxflow(int s,int t)
{
	double maxflow=0,d;
	int i,k,x,u;

	memset(num,0,sizeof(num));
	memset(h,0,sizeof(h));
	for(i=0;i<=t;i++) curedge[i]=head[i];
	num[n]=n;u=s;
	while(h[s]<n)
	{
		if(u==t)
		{
			for(d=INF+1,i=s;i!=t;i=edges[curedge[i]].v)if(d>edges[curedge[i]].cap)
				k=i,d=edges[curedge[i]].cap;
			for(i=s;i!=t;i=edges[curedge[i]].v)
			{
				x=curedge[i];
				edges[x].cap-=d;
				edges[x].flow+=d;
				edges[x^1].cap+=d;
				edges[x^1].flow-=d;
			}
			maxflow+=d;u=k;
		}
		for(i=curedge[u];i!=-1;i=edges[i].next)if(edges[i].cap>0&&h[u]==h[edges[i].v]+1)
			break;
		if(i!=-1)
		{
			curedge[u]=i;
			pre[edges[i].v]=u;
			u=edges[i].v;
		}
		else
		{
			if(0==--num[h[u]]) break;
			curedge[u]=head[u];
			for(x=n,i=head[u];i!=-1;i=edges[i].next) if(edges[i].cap>0)
				x=min(x,h[edges[i].v]);
			h[u]=x+1;num[h[u]]++;
			if(u!=s) u=pre[u];
		}
	}
	return maxflow;
}

void DFS(int u)
{
	int i;
	visit[u]=1;
	if(u!=s) ans[++ans[0]]=u;
	for(i=head[u];i!=-1;i=edges[i].next)
	{
	    if(edges[i].cap>1e-8&&!visit[edges[i].v])
		{
		    DFS(edges[i].v);
		}
	}
}


double calMaxDensity(int s,int t)
{
	double low,high,mid,flow;

	low=0.0;high=1.0*m;
	while(high-low>=1.0/n/n)
	{
		mid=(low+high)/2;
		init(mid);
		flow=Maxflow(s,t);
		flow=(1.0*m*n-flow)/2;
		if(flow>1e-8) low=mid;
		else high=mid;
	}
	init(low); Maxflow(s,t);clr(visit,0);
	ans[0]=0;DFS(s); sort(ans+1,ans+ans[0]+1);
	return low;
}


int main()
{
	while(scanf("%d%d",&n,&m)!=EOF)
	{
	    int i;
	    clr(d,0);
	    FOR1(i,m)
	    {
	        RD(a[i],b[i]);
	        d[a[i]]++;
	        d[b[i]]++;
        }
        if(!m)
        {
            puts("1"); puts("1");
            continue;
        }
        s=0;t=n+1;
        calMaxDensity(s,t);
        PR(ans[0]);
        FOR1(i,ans[0]) PR(ans[i]);
	}
	return 0;
}

  

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值