算法1(递归算法):
/*递归实现*/
#include<stdio.h>
int fib1(int a){
if(a<=2)
{
return 1;
}
else{
return fib1(a-1)+fib1(a-2);
}
}
/*求第n项斐波那契额数的值*/
void main()
{
int n;
printf("please input the number:");
scanf("%d",&n);
fib1(n);
printf("the number is:%d",fib1(n));
}
说明:最好理解的算法,和人的思路相当接近,对应的数学描述很清晰,容易编程.但是在C++语言中是使用栈机制实现的,如果使用递归函数,将会占用大 量的内存资源,对内存中的栈区进行掠夺,在大量调用递归函数之后很可能造成内存崩溃,就算不崩溃,也会是长时间的运算.在调用了clock函数后,计算出 了递归函数的耗时,是四个函数中最大的.而且这是个致命的缺点.时间复杂度为O(2n)(括号内为2的n次方).
算法2:迭代算法
/*迭代算法*/
#include<stdio.h>
long fib3(int n){
long x=0,y=1;
for(int j=1;j<n;j++){
y=x+y;
x=y-x;
}
return y;
}
/*求第n项斐波那契额数的值*/
void main()
{
int n;
printf("please input the number:");
scanf("%d",&n);
fib3(n);
printf("the number is:%d\n",fib3(n));
}
5种算法
#include <iostream>
#include <vector>
#include <string>
#include <cmath>
#include <fstream>
using namespace std;
class Matrix
{
public:
long matr[2][2];
Matrix(const Matrix&rhs);
Matrix(long a, long b, long c, long d);
Matrix& operator=(const Matrix&);
friend Matrix operator*(const Matrix& lhs, const Matrix& rhs)
{
Matrix ret(0,0,0,0);
ret.matr[0][0] = lhs.matr[0][0]*rhs.matr[0][0] + lhs.matr[0][1]*rhs.matr[1][0];
ret.matr[0][1] = lhs.matr[0][0]*rhs.matr[0][1] + lhs.matr[0][1]*rhs.matr[1][1];
ret.matr[1][0] = lhs.matr[1][0]*rhs.matr[0][0] + lhs.matr[1][1]*rhs.matr[1][0];
ret.matr[1][1] = lhs.matr[1][0]*rhs.matr[0][1] + lhs.matr[1][1]*rhs.matr[1][1];
return ret;
}
};
Matrix::Matrix(long a, long b, long c, long d)
{
this->matr[0][0] = a;
this->matr[0][1] = b;
this->matr[1][0] = c;
this->matr[1][1] = d;
}
Matrix::Matrix(const Matrix &rhs)
{
this->matr[0][0] = rhs.matr[0][0];
this->matr[0][1] = rhs.matr[0][1];
this->matr[1][0] = rhs.matr[1][0];
this->matr[1][1] = rhs.matr[1][1];
}
Matrix& Matrix::operator =(const Matrix &rhs)
{
this->matr[0][0] = rhs.matr[0][0];
this->matr[0][1] = rhs.matr[0][1];
this->matr[1][0] = rhs.matr[1][0];
this->matr[1][1] = rhs.matr[1][1];
return *this;
}
Matrix power(const Matrix& m, int n)
{
if (n == 1)
return m;
if (n%2 == 0)
return power(m*m, n/2);
else
return power(m*m, n/2) * m;
}
//普通递归
long fib1(int n)
{
if (n <= 2)
{
return 1;
}
else
{
return fib1(n-1) + fib1(n-2);
}
}
/*上面的效率分析代码
long fib1(int n, int* arr)
{
arr[n]++;
if (n <= 1)
{
return 1;
}
else
{
return fib1(n-1, arr) + fib1(n-2, arr);
}
}
*/
long fib(int n, long a, long b, int count)
{
if (count == n)
return b;
return fib(n, b, a+b, ++count);
}
//一叉递归
long fib2(int n)
{
return fib(n, 0, 1, 1);
}
//非递归方法O(n)
long fib3 (int n)
{
long x = 0, y = 1;
for (int j = 1; j < n; j++)
{
y = x + y;
x = y - x;
}
return y;
}
//矩阵乘法O(log(n))
long fib4 (int n)
{
Matrix matrix0(1, 1, 1, 0);
matrix0 = power(matrix0, n-1);
return matrix0.matr[0][0];
}
//公式法O(1)
long fib5(int n)
{
double z = sqrt(5.0);
double x = (1 + z)/2;
double y = (1 - z)/2;
return (pow(x, n) - pow(y, n))/z + 0.5;
}
int main()
{
//n = 45时候fib1()很慢
int n = 10;
cout << fib1(n) << endl;
cout << fib2(n) << endl;
cout << fib3(n) << endl;
cout << fib4(n) << endl;
cout << fib5(n) << endl;
return 0;
}