跨摄像头多目标跟踪(Multi-Target Multi-Camera Tracking, MTMC Tracking)
跨摄像头多目标跟踪(Multi-Target Multi-Camera Tracking, MTMC Tracking)是监控视频领域一个非常重要的研究课题,本文以下内容直接简称为MTMC。单摄像头的单目标跟踪和多目标跟踪目前来说还有一些不错的解决方法,但是MTMC这个领域总得来说还没形成一些解决套路,有非常大的研究空间。而MTMC算法的评价指标也是一个极其复杂的系统,拥有十余项评价指标,本文便逐个介绍这些评价指标。Multi-Target Multi-Camera Tracking (MTMC Tracking)评价指标
行人重识别(Person Re-identification)
行人重识别(Person Re-identification)也称行人再识别,本文简称为ReID,是利用计算机视觉技术判断图像或者视频序列中是否存在特定行人的技术。广泛被认为是一个图像检索的子问题。给定一个监控行人图像,检索跨设备下的该行人图像。在监控视频中,由于相机分辨率和拍摄角度的缘故,通常无法得到质量非常高的人脸图片。当人脸识别失效的情况下,ReID就成为了一个非常重要的替代品技术。ReID有一个非常重要的特性就是跨摄像头,所以学术论文里评价性能的时候,是要检索出不同摄像头下的相同行人图片。ReID已经在学术界研究多年,但直到最近几年随着深度学习的发展,才取得了非常巨大的突破。基于深度学习的行人重识别研究综述
多目标跟踪(Multiple Object Tracking,MOT)
2015
High-Speed Tracking with Kernelized Correlation Filters
J. F. Henriques, R. Caseiro, P. Martins, J. Batista
TPAMI, 2015 ( Source code, PDF)
2016
Fully-Convolutional Siamese Networks for Object Tracking
L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi, P. H. S. Torr
ECCV Workshops, 2016 ( Source code, arXiv)
2017
End-to-end Representation Learning for Correlation Filter Based Tracking
J. Valmadre, L. Bertinetto, J. F. Henriques, A. Vedaldi, P. H. S. Torr
CVPR, 2017 ( Source code, arXiv)