推荐系统资料汇总

大数据/数据挖掘/推荐系统/机器学习相关资源Share my personal resources 
视频大数据视频以及讲义http://pan.baidu.com/share/link?shareid=3860301827&uk=3978262348
浙大数据挖掘系列http://v.youku.com/v_show/id_XNTgzNDYzMjg=.html?f=2740765
用Python做科学计算http://www.tudou.com/listplay/fLDkg5e1pYM.html
R语言视频http://pan.baidu.com/s/1koSpZ
Hadoop视频http://pan.baidu.com/s/1b1xYd
42区 . 技术 . 创业 . 第二讲http://v.youku.com/v_show/id_XMzAyMDYxODUy.html
加州理工学院公开课:机器学习与数据挖掘http://v.163.com/special/opencourse/learningfromdata.html
书籍各种书~各种ppt~更新中~http://pan.baidu.com/s/1EaLnZ
机器学习经典书籍小结http://www.cnblogs.com/snake-hand/archive/2013/06/10/3131145.html
QQ群机器学习&模式识别 246159753
数据挖掘机器学习 236347059
推荐系统 274750470
博客推荐系统周涛 http://blog.sciencenet.cn/home.php?mod=space&uid=3075
Greg Linden http://glinden.blogspot.com/ 
Marcel Caraciolo   http://aimotion.blogspot.com/
ResysChina         http://weibo.com/p/1005051686952981
推荐系统人人小站    http://zhan.renren.com/recommendersystem
阿稳  http://www.wentrue.net
梁斌  http://weibo.com/pennyliang
刁瑞  http://diaorui.net
guwendong http://www.guwendong.com
xlvector http://xlvector.net
懒惰啊我 http://www.cnblogs.com/flclain/
free mind http://blog.pluskid.org/
lovebingkuai    http://lovebingkuai.diandian.com/
LeftNotEasy http://www.cnblogs.com/LeftNotEasy
LSRS 2013 http://graphlab.org/lsrs2013/program/ 
Google小组 https://groups.google.com/forum/#!forum/resys
机器学习Journal of Machine Learning Research http://jmlr.org/
信息检索清华大学信息检索组 http://www.thuir.cn
自然语言处理我爱自然语言处理 http://www.52nlp.cn/test
Github推荐系统推荐系统开源软件列表汇总和评点 http://in.sdo.com/?p=1707
Mrec(Python)
https://github.com/mendeley/mrec
Crab(Python)
https://github.com/muricoca/crab
Python-recsys(Python)
https://github.com/ocelma/python-recsys
CofiRank(C++)
https://github.com/markusweimer/cofirank
GraphLab(C++)
https://github.com/graphlab-code/graphlab
EasyRec(Java)
https://github.com/hernad/easyrec
Lenskit(Java)
https://github.com/grouplens/lenskit
Mahout(Java)
https://github.com/apache/mahout
Recommendable(Ruby)
https://github.com/davidcelis/recommendable
文章机器学习 推荐系统
  • Netflix 推荐系统:第一部分 http://blog.csdn.net/bornhe/article/details/8222450
  • Netflix 推荐系统:第二部分 http://blog.csdn.net/bornhe/article/details/8222497
  • 探索推荐引擎内部的秘密 http://www.ibm.com/developerworks/cn/web/1103_zhaoct_recommstudy1/index.html
  • 推荐系统resys小组线下活动见闻2009-08-22   http://www.tuicool.com/articles/vUvQVn
  • Recommendation Engines Seminar Paper, Thomas Hess, 2009: 推荐引擎的总结性文章http://www.slideshare.net/antiraum/recommender-engines-seminar-paper
  • Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions, Adomavicius, G.; Tuzhilin, A., 2005  http://dl.acm.org/citation.cfm?id=1070751
  • A Taxonomy of RecommenderAgents on the Internet, Montaner, M.; Lopez, B.; de la Rosa, J. L., 2003http://www.springerlink.com/index/KK844421T5466K35.pdf
  • A Course in Machine Learning http://ciml.info/
  • 基于mahout构建社会化推荐引擎  http://www.doc88.com/p-745821989892.html
  • 个性化推荐技术漫谈 http://blog.csdn.net/java060515/archive/2007/04/19/1570243.aspx
  • Design of Recommender System http://www.slideshare.net/rashmi/design-of-recommender-systems
  • How to build a recommender system http://www.slideshare.net/blueace/how-to-build-a-recommender-system-presentation
  • 推荐系统架构小结  http://blog.csdn.net/idonot/article/details/7996733
  • System Architectures for Personalization and Recommendation http://techblog.netflix.com/2013/03/system-architectures-for.html
  • The Netflix Tech Blog http://techblog.netflix.com/
  • 百分点推荐引擎——从需求到架构http://www.infoq.com/cn/articles/baifendian-recommendation-engine
  • 推荐系统 在InfoQ上的内容  http://www.infoq.com/cn/recommend
  • 推荐系统实时化的实践和思考 http://www.infoq.com/cn/presentations/recommended-system-real-time-practice-thinking
  • 质量保证的推荐实践  http://www.infoq.com/cn/news/2013/10/testing-practice/
  • 推荐系统的工程挑战  http://www.infoq.com/cn/presentations/Recommend-system-engineering
  • 社会化推荐在人人网的应用  http://www.infoq.com/cn/articles/zyy-social-recommendation-in-renren/
  • 利用20%时间开发推荐引擎  http://www.infoq.com/cn/presentations/twenty-percent-time-to-develop-recommendation-engine
  • 使用Hadoop和 Mahout实现推荐引擎 http://www.jdon.com/44747
  • SVD 简介 http://www.cnblogs.com/FengYan/archive/2012/05/06/2480664.html
  • Netflix推荐系统:从评分预测到消费者法则 http://blog.csdn.net/lzt1983/article/details/7696578
  • 《推荐系统实践》的Reference
    1.     http://en.wikipedia.org/wiki/Information_overload 
    2.    P1 
    3.    
    4.   http://www.readwriteweb.com/archives/recommender_systems.php 
    5.   (A Guide to Recommender System) P4 
    6.    
    7.    
    8.   http://en.wikipedia.org/wiki/Cross-selling 
    9.    (Cross Selling) P6 
    10.    
    11.   http://blog.kiwitobes.com/?p=58 , http://stanford2009.wikispaces.com/ 
    12.   (课程:Data Mining and E-Business: The Social Data Revolution) P7 
    13.    
    14.    http://thesearchstrategy.com/ebooks/an introduction to search engines and web navigation.pdf 
    15.   (An Introduction to Search Engines and Web Navigation) p7 
    16.    
    17.   http://www.netflixprize.com/ 
    18.   p8 
    19.    
    20.   http://cdn-0.nflximg.com/us/pdf/Consumer_Press_Kit.pdf 
    21.    p9 
    22.    
    23.    http://stuyresearch.googlecode.com/hg-history/c5aa9d65d48c787fd72dcd0ba3016938312102bd/blake/resources/p293-davidson.pdf 
    24.   (The Youtube video recommendation system) p9 
    25.    
    26.    http://www.slideshare.net/plamere/music-recommendation-and-discovery 
    27.   ( PPT: Music Recommendation and Discovery) p12 
    28.    
    29.   http://www.facebook.com/instantpersonalization/ 
    30.   P13 
    31.    
    32.    http://about.digg.com/blog/digg-recommendation-engine-updates 
    33.    (Digg Recommendation Engine Updates) P16 
    34.    
    35.    http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//pubs/archive/36955.pdf 
    36.    (The Learning Behind Gmail Priority Inbox)p17 
    37.    
    38.   http://www.grouplens.org/papers/pdf/mcnee-chi06-acc.pdf 
    39.   (Accurate is not always good: How Accuracy Metrics have hurt Recommender Systems) P20 
    40.    
    41.   http://www-users.cs.umn.edu/~mcnee/mcnee-cscw2006.pdf 
    42.    (Don’t Look Stupid: Avoiding Pitfalls when Recommending Research Papers)P23 
    43.    
    44.   http://www.sigkdd.org/explorations/issues/9-2-2007-12/7-Netflix-2.pdf 
    45.    (Major componets of the gravity recommender system) P25 
    46.    
    47.   http://cacm.acm.org/blogs/blog-cacm/22925-what-is-a-good-recommendation-algorithm/fulltext 
    48.   (What is a Good Recomendation Algorithm?) P26 
    49.    
    50.   http://research.microsoft.com/pubs/115396/evaluationmetrics.tr.pdf 
    51.    (Evaluation Recommendation Systems) P27 
    52.    
    53.   http://mtg.upf.edu/static/media/PhD_ocelma.pdf 
    54.   (Music Recommendation and Discovery in the Long Tail) P29 
    55.    
    56.   http://ir.ii.uam.es/divers2011/ 
    57.   (Internation Workshop on Novelty and Diversity in Recommender Systems) p29 
    58.    
    59.   http://www.cs.ucl.ac.uk/fileadmin/UCL-CS/research/Research_Notes/RN_11_21.pdf 
    60.   (Auralist: Introducing Serendipity into Music Recommendation ) P30 
    61.    
    62.   http://www.springerlink.com/content/978-3-540-78196-7/#section=239197&page=1&locus=21 
    63.   (Metrics for evaluating the serendipity of recommendation lists) P30 
    64.    
    65.   http://dare.uva.nl/document/131544 
    66.   (The effects of transparency on trust in and acceptance of a content-based art recommender) P31
    67.    
    68.   http://brettb.net/project/papers/2007 Trust-aware recommender systems.pdf 
    69.    (Trust-aware recommender systems) P31 
    70.    
    71.   http://recsys.acm.org/2011/pdfs/RobustTutorial.pdf 
    72.   (Tutorial on robutness of recommender system) P32 
    73.    
    74.   http://youtube-global.blogspot.com/2009/09/five-stars-dominate-ratings.html 
    75.    (Five Stars Dominate Ratings) P37 
    76.    
    77.   http://www.informatik.uni-freiburg.de/~cziegler/BX/ 
    78.   (Book-Crossing Dataset) P38 
    79.    
    80.   http://www.dtic.upf.edu/~ocelma/MusicRecommendationDataset/lastfm-1K.html 
    81.   (Lastfm Dataset) P39 
    82.    
    83.   http://mmdays.com/2008/11/22/power_law_1/ 
    84.   (浅谈网络世界的Power Law现象) P39 
    85.    
    86.   http://www.grouplens.org/node/73/ 
    87.   (MovieLens Dataset) P42 
    88.    
    89.   http://research.microsoft.com/pubs/69656/tr-98-12.pdf 
    90.   (Empirical Analysis of Predictive Algorithms for Collaborative Filtering) P49 
    91.    
    92.   http://vimeo.com/1242909 
    93.   (Digg Vedio) P50 
    94.    
    95.   http://glaros.dtc.umn.edu/gkhome/fetch/papers/itemrsCIKM01.pdf 
    96.    (Evaluation of Item-Based Top-N Recommendation Algorithms) P58 
    97.    
    98.   http://www.cs.umd.edu/~samir/498/Amazon-Recommendations.pdf 
    99.   (Amazon.com Recommendations Item-to-Item Collaborative Filtering) P59 
    100.    
    101.   http://glinden.blogspot.com/2006/03/early-amazon-similarities.html 
    102.    (Greg Linden Blog) P63 
    103.    
    104.   http://www.hpl.hp.com/techreports/2008/HPL-2008-48R1.pdf 
    105.   (One-Class Collaborative Filtering) P67 
    106.    
    107.   http://en.wikipedia.org/wiki/Stochastic_gradient_descent 
    108.   (Stochastic Gradient Descent) P68 
    109.    
    110.   http://www.ideal.ece.utexas.edu/seminar/LatentFactorModels.pdf 
    111.    (Latent Factor Models for Web Recommender Systems) P70 
    112.    
    113.   http://en.wikipedia.org/wiki/Bipartite_graph 
    114.   (Bipatite Graph) P73 
    115.    
    116.   http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4072747&url=http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4072747 
    117.   (Random-Walk Computation of Similarities between Nodes of a Graph with Application to Collaborative Recommendation) P74 
    118.    
    119.   http://www-cs-students.stanford.edu/~taherh/papers/topic-sensitive-pagerank.pdf 
    120.   (Topic Sensitive Pagerank) P74 
    121.    
    122.   http://www.stanford.edu/dept/ICME/docs/thesis/Li-2009.pdf 
    123.   (FAST ALGORITHMS FOR SPARSE MATRIX INVERSE COMPUTATIONS) P77 
    124.    
    125.   https://www.aaai.org/ojs/index.php/aimagazine/article/view/1292 
    126.    (LIFESTYLE FINDER: Intelligent User Profiling Using Large-Scale Demographic Data) P80
    127.    
    128.   http://research.yahoo.com/files/wsdm266m-golbandi.pdf 
    129.   ( adaptive bootstrapping of recommender systems using decision trees) P87 
    130.    
    131.   http://en.wikipedia.org/wiki/Vector_space_model 
    132.   (Vector Space Model) P90 
    133.    
    134.   http://tunedit.org/challenge/VLNetChallenge 
    135.   (冷启动问题的比赛) P92 
    136.    
    137.   http://www.cs.princeton.edu/~blei/papers/BleiNgJordan2003.pdf 
    138.    (Latent Dirichlet Allocation) P92 
    139.    
    140.   http://en.wikipedia.org/wiki/Kullback–Leibler_divergence 
    141.    (Kullback–Leibler divergence) P93 
    142.    
    143.   http://www.pandora.com/about/mgp 
    144.   (About The Music Genome Project) P94 
    145.    
    146.   http://en.wikipedia.org/wiki/List_of_Music_Genome_Project_attributes 
    147.   (Pandora Music Genome Project Attributes) P94 
    148.    
    149.   http://www.jinni.com/movie-genome.html 
    150.   (Jinni Movie Genome) P94 
    151.    
    152.   http://www.shilad.com/papers/tagsplanations_iui2009.pdf 
    153.    (Tagsplanations: Explaining Recommendations Using Tags) P96 
    154.    
    155.   http://en.wikipedia.org/wiki/Tag_(metadata) 
    156.   (Tag Wikipedia) P96 
    157.    
    158.   http://www.shilad.com/shilads_thesis.pdf 
    159.   (Nurturing Tagging Communities) P100 
    160.    
    161.   http://www.stanford.edu/~morganya/research/chi2007-tagging.pdf 
    162.    (Why We Tag: Motivations for Annotation in Mobile and Online Media ) P100 
    163.    
    164.   http://www.google.com/url?sa=t&rct=j&q=delicious dataset dai-larbor&source=web&cd=1&ved=0CFIQFjAA&url=http://www.dai-labor.de/en/competence_centers/irml/datasets/&ei=1R4JUKyFOKu0iQfKvazzCQ&usg=AFQjCNGuVzzKIKi3K2YFybxrCNxbtKqS4A&cad=rjt 
    165.   (Delicious Dataset) P101 
    166.    
    167.   http://research.microsoft.com/pubs/73692/yihgoca-www06.pdf 
    168.    (Finding Advertising Keywords on Web Pages) P118 
    169.    
    170.   http://www.kde.cs.uni-kassel.de/ws/rsdc08/ 
    171.   (基于标签的推荐系统比赛) P119 
    172.    
    173.   http://delab.csd.auth.gr/papers/recsys.pdf 
    174.   (Tag recommendations based on tensor dimensionality reduction)P119 
    175.    
    176.   http://www.l3s.de/web/upload/documents/1/recSys09.pdf 
    177.   (latent dirichlet allocation for tag recommendation) P119 
    178.    
    179.   http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.5271&rep=rep1&type=pdf 
    180.   (Folkrank: A ranking algorithm for folksonomies) P119 
    181.    
    182.   http://www.grouplens.org/system/files/tagommenders_numbered.pdf 
    183.    (Tagommenders: Connecting Users to Items through Tags) P119 
    184.    
    185.   http://www.grouplens.org/system/files/group07-sen.pdf 
    186.   (The Quest for Quality Tags) P120 
    187.    
    188.   http://2011.camrachallenge.com/ 
    189.   (Challenge on Context-aware Movie Recommendation) P123 
    190.    
    191.   http://bits.blogs.nytimes.com/2011/09/07/the-lifespan-of-a-link/ 
    192.   (The Lifespan of a link) P125 
    193.    
    194.   http://www0.cs.ucl.ac.uk/staff/l.capra/publications/lathia_sigir10.pdf 
    195.    (Temporal Diversity in Recommender Systems) P129 
    196.    
    197.   http://staff.science.uva.nl/~kamps/ireval/papers/paper_14.pdf 
    198.    (Evaluating Collaborative Filtering Over Time) P129 
    199.    
    200.   http://www.google.com/places/ 
    201.   (Hotpot) P139 
    202.    
    203.   http://www.readwriteweb.com/archives/google_launches_recommendation_engine_for_places.php 
    204.   (Google Launches Hotpot, A Recommendation Engine for Places) P139 
    205.    
    206.   http://xavier.amatriain.net/pubs/GeolocatedRecommendations.pdf 
    207.    (geolocated recommendations) P140 
    208.    
    209.   http://www.nytimes.com/interactive/2010/01/10/nyregion/20100110-netflix-map.html 
    210.   (A Peek Into Netflix Queues) P141 
    211.    
    212.   http://www.cs.umd.edu/users/meesh/420/neighbor.pdf 
    213.   (Distance Browsing in Spatial Databases1) P142 
    214.    
    215.   http://www.eng.auburn.edu/~weishinn/papers/MDM2010.pdf 
    216.    (Efficient Evaluation of k-Range Nearest Neighbor Queries in Road Networks) P143 
    217.    
    218.    
    219.   http://blog.nielsen.com/nielsenwire/consumer/global-advertising-consumers-trust-real-friends-and-virtual-strangers-the-most/ 
    220.   (Global Advertising: Consumers Trust Real Friends and Virtual Strangers the Most) P144 
    221.    
    222.   http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//pubs/archive/36371.pdf 
    223.   (Suggesting Friends Using the Implicit Social Graph) P145 
    224.    
    225.   http://blog.nielsen.com/nielsenwire/online_mobile/friends-frenemies-why-we-add-and-remove-facebook-friends/ 
    226.   (Friends & Frenemies: Why We Add and Remove Facebook Friends) P147 
    227.    
    228.   http://snap.stanford.edu/data/ 
    229.   (Stanford Large Network Dataset Collection) P149 
    230.    
    231.   http://www.dai-labor.de/camra2010/ 
    232.   (Workshop on Context-awareness in Retrieval and Recommendation) P151 
    233.    
    234.   http://www.comp.hkbu.edu.hk/~lichen/download/p245-yuan.pdf 
    235.    (Factorization vs. Regularization: Fusing Heterogeneous 
    236.   Social Relationships in Top-N Recommendation) P153 
    237.    
    238.   http://www.infoq.com/news/2009/06/Twitter-Architecture/ 
    239.   (Twitter, an Evolving Architecture) P154 
    240.    
    241.   http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CGQQFjAB&url=http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.165.3679&rep=rep1&type=pdf&ei=dIIJUMzEE8WviQf5tNjcCQ&usg=AFQjCNGw2bHXJ6MdYpksL66bhUE8krS41w&sig2=5EcEDhRe9S5SQNNojWk7_Q 
    242.   (Recommendations in taste related domains) P155 
    243.    
    244.   http://www.ercim.eu/publication/ws-proceedings/DelNoe02/RashmiSinha.pdf 
    245.   (Comparing Recommendations Made by Online Systems and Friends) P155 
    246.    
    247.   http://techcrunch.com/2010/04/22/facebook-edgerank/ 
    248.   (EdgeRank: The Secret Sauce That Makes Facebook's News Feed Tick) P157 
    249.    
    250.   http://www.grouplens.org/system/files/p217-chen.pdf 
    251.   (Speak Little and Well: Recommending Conversations in Online Social Streams) P158 
    252.    
    253.   http://blog.linkedin.com/2008/04/11/learn-more-abou-2/ 
    254.   (Learn more about “People You May Know”) P160 
    255.    
    256.   http://domino.watson.ibm.com/cambridge/research.nsf/58bac2a2a6b05a1285256b30005b3953/8186a48526821924852576b300537839/$FILE/TR 2009.09 Make New Frends.pdf 
    257.   (“Make New Friends, but Keep the Old” – Recommending People on Social Networking Sites) P164 
    258.    
    259.   http://www.google.com.hk/url?sa=t&rct=j&q=social+recommendation+using+prob&source=web&cd=2&ved=0CFcQFjAB&url=http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.141.465&rep=rep1&type=pdf&ei=LY0JUJ7OL9GPiAfe8ZzyCQ&usg=AFQjCNH-xTUWrs9hkxTA8si5fztAdDAEng 
    260.   (SoRec: Social Recommendation Using Probabilistic Matrix) P165 
    261.    
    262.   http://olivier.chapelle.cc/pub/DBN_www2009.pdf 
    263.   (A Dynamic Bayesian Network Click Model for Web Search Ranking) P177 
    264.    
    265.   http://www.google.com.hk/url?sa=t&rct=j&q=online+learning+from+click+data+spnsored+search&source=web&cd=1&ved=0CFkQFjAA&url=http://www.research.yahoo.net/files/p227-ciaramita.pdf&ei=HY8JUJW8CrGuiQfpx-XyCQ&usg=AFQjCNE_CYbEs8DVo84V-0VXs5FeqaJ5GQ&cad=rjt 
    266.   (Online Learning from Click Data for Sponsored Search) P177 
    267.    
    268.   http://www.cs.cmu.edu/~deepay/mywww/papers/www08-interaction.pdf 
    269.   (Contextual Advertising by Combining Relevance with Click Feedback) P177 
    270.   http://tech.hulu.com/blog/2011/09/19/recommendation-system/ 
    271.   (Hulu 推荐系统架构) P178 
    272.    
    273.   http://mymediaproject.codeplex.com/ 
    274.   (MyMedia Project) P178 
    275.    
    276.   http://www.grouplens.org/papers/pdf/www10_sarwar.pdf 
    277.   (item-based collaborative filtering recommendation algorithms) P185 
    278.    
    279.   http://www.stanford.edu/~koutrika/Readings/res/Default/billsus98learning.pdf 
    280.   (Learning Collaborative Information Filters) P186 
    281.    
    282.   http://sifter.org/~simon/journal/20061211.html 
    283.   (Simon Funk Blog:Funk SVD) P187 
    284.    
    285.   http://courses.ischool.berkeley.edu/i290-dm/s11/SECURE/a1-koren.pdf 
    286.   (Factor in the Neighbors: Scalable and Accurate Collaborative Filtering) P190 
    287.    
    288.   http://nlpr-web.ia.ac.cn/2009papers/gjhy/gh26.pdf 
    289.   (Time-dependent Models in Collaborative Filtering based Recommender System) P193 
    290.    
    291.   http://sydney.edu.au/engineering/it/~josiah/lemma/kdd-fp074-koren.pdf 
    292.   (Collaborative filtering with temporal dynamics) P193 
    293.    
    294.   http://en.wikipedia.org/wiki/Least_squares 
    295.   (Least Squares Wikipedia) P195 
    296.    
    297.   http://www.mimuw.edu.pl/~paterek/ap_kdd.pdf 
    298.   (Improving regularized singular value decomposition for collaborative filtering) P195 
    299.    
    300.   http://public.research.att.com/~volinsky/netflix/kdd08koren.pdf 
    301.    (Factorization Meets the Neighborhood: a Multifaceted 
    302.   Collaborative Filtering Model) P195
    复制代码
 
 
  
沙发
 
 发表于 2014-3-19 11:59:18

【ACM RecSys 2009 Workshop】Improving recommendation accuracy by clustering so.pdf

【CIKM 2012 Best Stu Paper】Incorporating Occupancy into Frequent Pattern Mini.pdf

【CIKM 2012 poster】A Latent Pairwise Preference Learning Approach for Recomme.pdf

【CIKM 2012 poster】An Effective Category Classification Method Based on a Lan.pdf

【CIKM 2012 poster】Learning to Rank for Hybrid Recommendation.pdf

【CIKM 2012 poster】Learning to Recommend with Social Relation Ensemble.pdf

【CIKM 2012 poster】Maximizing Revenue from Strategic Recommendations under De.pdf

【CIKM 2012 poster】On Using Category Experts for Improving the Performance an.pdf

【CIKM 2012 poster】Relation Regularized Subspace Recommending for Related Sci.pdf

【CIKM 2012 poster】Top-N Recommendation through Belief Propagation.pdf

【CIKM 2012 poster】Twitter Hyperlink Recommendation with User-Tweet-Hyperlink.pdf

【CIKM 2012 short】Automatic Query Expansion Based on Tag Recommendation.pdf

【CIKM 2012 short】Graph-Based Workflow Recommendation- On Improving Business .pdf

【CIKM 2012 short】Location-Sensitive Resources Recommendation in Social Taggi.pdf

【CIKM 2012 short】More Than Relevance- High Utility Query Recommendation By M.pdf

【CIKM 2012 short】PathRank- A Novel Node Ranking Measure on a Heterogeneous G.pdf

【CIKM 2012 short】PRemiSE- Personalized News Recommendation via Implicit Soci.pdf

【CIKM 2012 short】Query Recommendation for Children.pdf

【CIKM 2012 short】The Early-Adopter Graph and its Application to Web-Page Rec.pdf

【CIKM 2012 short】Time-aware Topic Recommendation Based on Micro-blogs.pdf

【CIKM 2012 short】Using Program Synthesis for Social Recommendations.pdf

【CIKM 2012】A Decentralized Recommender System for Effective Web Credibility .pdf

【CIKM 2012】A Generalized Framework for Reciprocal Recommender Systems.pdf

【CIKM 2012】Dynamic Covering for Recommendation Systems.pdf

【CIKM 2012】Efficient Retrieval of Recommendations in a Matrix Factorization .pdf

【CIKM 2012】Exploring Personal Impact for Group Recommendation.pdf

【CIKM 2012】LogUCB- An Explore-Exploit Algorithm For Comments Recommendation.pdf

【CIKM 2012】Metaphor- A System for Related Search Recommendations.pdf

【CIKM 2012】Social Contextual Recommendation.pdf

【CIKM 2012】Social Recommendation Across Multiple Relational Domains.pdf

【COMMUNICATIONS OF THE ACM】Recommender Systems.pdf

【ICDM 2012 short___】Multiplicative Algorithms for Constrained Non-negative M.pdf

【ICDM 2012 short】Collaborative Filtering with Aspect-based Opinion Mining- A.pdf

【ICDM 2012 short】Learning Heterogeneous Similarity Measures for Hybrid-Recom.pdf

【ICDM 2012 short】Mining Personal Context-Aware Preferences for Mobile Users.pdf

【ICDM 2012】Link Prediction and Recommendation across Heterogenous Social Networks.pdf

【IEEE Computer Society 2009】Matrix factorization techniques for recommender .pdf

【IEEE Consumer Communications and Networking Conference 2006】FilmTrust movie.pdf

【IEEE Trans on Audio, Speech and Laguage Processing 2010】Personalized music .pdf

【IEEE Transactions on Knowledge and Data Engineering 2005】Toward the next ge.pdf

【INFOCOM 2011】Bayesian-inference Based Recommendation in Online Social Network.pdf

【KDD 2009】Learning optimal ranking with tensor factorization for tag recomme.pdf

【SIGIR 2009】Learning to Recommend with Social Trust Ensemble.pdf

【SIGIR 2012】Adaptive Diversification of Recommendation Results via Latent Fa.pdf

【SIGIR 2012】Collaborative Personalized Tweet Recommendation.pdf

【SIGIR 2012】Dual Role Model for Question Recommendation in Community Questio.pdf

【SIGIR 2012】Exploring Social Influence for Recommendation - A Generative Mod.pdf

【SIGIR 2012】Increasing Temporal Diversity with Purchase Intervals.pdf

【SIGIR 2012】Learning to Rank Social Update Streams.pdf

【SIGIR 2012】Personalized Click Shaping through Lagrangian Duality for Online.pdf

【SIGIR 2012】Predicting the Ratings of Multimedia Items for Making Personaliz.pdf

【SIGIR 2012】TFMAP-Optimizing MAP for Top-N Context-aware Recommendation.pdf

【SIGIR 2012】What Reviews are Satisfactory- Novel Features for Automatic Help.pdf

【SIGKDD 2012】 A Semi-Supervised Hybrid Shilling Attack Detector for Trustwor.pdf

【SIGKDD 2012】 RecMax- Exploiting Recommender Systems for Fun and Profit.pdf

【SIGKDD 2012】Circle-based Recommendation in Online Social Networks.pdf

【SIGKDD 2012】Cross-domain Collaboration Recommendation.pdf

【SIGKDD 2012】Finding Trending Local Topics in Search Queries for Personaliza.pdf

【SIGKDD 2012】GetJar Mobile Application Recommendations with Very Sparse Datasets.pdf

【SIGKDD 2012】Incorporating Heterogenous Information for Personalized Tag Rec.pdf

【SIGKDD 2012】Learning Personal+Social Latent Factor Model for Social Recomme.pdf

【VLDB 2012】Challenging the Long Tail Recommendation.pdf

【VLDB 2012】Supercharging Recommender Systems using Taxonomies for Learning U.pdf

【WWW 2012 Best paper】Build Your Own Music Recommender by Modeling Internet R.pdf

【WWW 2013】A Personalized Recommender System Based on User's Informatio.pdf

【WWW 2013】Diversified Recommendation on Graphs-Pitfalls, Measures, and Algorithms.pdf

【WWW 2013】Do Social Explanations Work-Studying and Modeling the Effects of S.pdf

【WWW 2013】Generation of Coalition Structures to Provide Proper Groups'.pdf

【WWW 2013】Learning to Recommend with Multi-Faceted Trust in Social Networks.pdf

【WWW 2013】Multi-Label Learning with Millions of Labels-Recommending Advertis.pdf

【WWW 2013】Personalized Recommendation via Cross-Domain Triadic Factorization.pdf

【WWW 2013】Profile Deversity in Search and Recommendation.pdf

【WWW 2013】Real-Time Recommendation of Deverse Related Articles.pdf

【WWW 2013】Recommendation for Online Social Feeds by Exploiting User Response.pdf

【WWW 2013】Recommending Collaborators Using Keywords.pdf

【WWW 2013】Signal-Based User Recommendation on Twitter.pdf

【WWW 2013】SoCo- A Social Network Aided Context-Aware Recommender System.pdf

【WWW 2013】Tailored News in the Palm of Your HAND-A Multi-Perspective Transpa.pdf

【WWW 2013】TopRec-Domain-Specific Recommendation through Community Topic Mini.pdf

【WWW 2013】User's Satisfaction in Recommendation Systems for Groups-an .pdf

【WWW 2013】Using Link Semantics to Recommend Collaborations in Academic Socia.pdf

【WWW 2013】Whom to Mention-Expand the Diffusion of Tweets by @ Recommendation.pdf

Recommender+Systems+Handbook.pdf

tutorial.pdf
各个领域的推荐系统

图书

    Amazon
    豆瓣读书
    当当网

新闻

    Google News
    Genieo
    Getprismatic http://getprismatic.com/ 

电影

    Netflix
    Jinni
    MovieLens
    Rotten Tomatoes
    Flixster
    MTime

音乐

    豆瓣电台
    Lastfm
    Pandora
    Mufin
    Lala
    EMusic
    Ping
    虾米电台
    Jing.FM

视频

    Youtube
    Hulu
    Clciker

文章

    CiteULike
    Google Reader
    StumbleUpon

旅游

    Wanderfly
    TripAdvisor

社会网络

    Facebook
    Twitter

综合

    Amazon
    GetGlue
    Strands
    Hunch

转载于:https://www.cnblogs.com/chybot/p/4625164.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值